Fixed Point Results on Fuzzy Mappings for Rational Expressions

Garg Surendra Kumar and Shukla Manoj Kumar
Department of Mathematics, Govt. Model Science College, Jabalpur, MP, INDIA

Available online at: www.isca.in
Received 26th March 2013, revised 8th April 2013, accepted 22nd April 2013

Abstract

In this paper we prove some fixed point and common fixed point theorems for fuzzy mappings in complete metric space which also include rational expression as a contraction. AMS Subject Classification: 54H25, 47H10

Keywords: complete metric space, fuzzy mappings, fixed point, common fixed point.

Introduction

In 1965 Zadeh\(^1\) introduce the concept of fuzzy sets. After that so many works have been done in fuzzy sets. In 1981 Heilpern\(^2\) define fuzzy mappings are use of fuzzy mappings he proved fixed point theorem which is a fuzzy analogue of the fixed point theorem for multi valued mappings of Nadler\(^3\), Vijayaraju and Marudai\(^4\) generalized the results of Bose and Mukherjee\(^5\) for fuzzy mappings. So many authors Marudai and Srinivasan\(^6\), Bose and Sahani\(^7\), Butnariu\(^8,9,10\), Chang and Huang\(^11\), Chang\(^12\), Chitra\(^13\), Som and Mukharjee\(^14\) studied fixed point theorems for fuzzy mappings. Lee, Cho, Lee and Kim\(^15\) obtained a common fixed point theorem for a sequence of fuzzy mappings satisfying certain conditions, which is generalization of the second theorem of Bose and Sahini\(^7\).

More recently Vijayaraju and Mohanraj\(^16\) obtained some fixed point theorems for contractive type fuzzy mappings which are generalization of Beg and Azam\(^17\). Fuzzy extension of Kirk and Downing\(^18\) and its prove analogue to the proof of Park and Jeong\(^19\). In the present paper we are proving some fixed point and common fixed point theorems in fuzzy mappings containing the rational expressions.

Preliminaries

We need following definitions and assumptions:

Definition 2.1 Let X be any metric linear space and d be any metric on X. A fuzzy set in X is a function with domain X and values in [0,1]. If A is a fuzzy set and \(x\in X\), the function value A(x) is called the grade of membership of x in A. The collection of all fuzzy sets in X is denoted by \(\mathcal{F}(X)\).

Let \(A\in \mathcal{F}(X)\) and \(\alpha\in [0,1]\). The set \(\alpha\)-level set of A, denoted by \(A_\alpha\)

\[A_\alpha = \{ x: A(x) \geq \alpha \} \text{ if } \alpha \in [0,1],\]

\[A_\alpha = \{ x: A(x) > 0 \} \text{ whenever } B \text{ is clouser of } B\]

Now we distinguish from the collection \(\mathcal{F}(X)\) a sub collection of approximate quantities, denoted \(W(X)\).

Definition 2.2 A fuzzy subset A of X is an approximate quantity if its \(\alpha\)-level set is a compact subset (non fuzzy) of X for each \(\alpha \in [0,1]\), and \(\sup_{x\in X} A(x) = 1\).

Let \(A \in W(X)\) and \(A(x_0) = 1\) for some \(x_0 \in W(X)\), we will identify A with an approximation of \(x_0\). Then we shall define a distance between two approximate quantities.

Definition 2.3 Let A, B \(\in W(X)\), \(\alpha \in [0,1]\), define

\[p_\alpha (A, B) = \inf_{x\in A_\alpha, y\in B_\alpha} d(x, y), D_\alpha (A, B) = \text{dist}(A_\alpha, B_\alpha), d(A, B) = \sup_\alpha D_\alpha (A, B)\]

Where dist. Is Hausdorff distance. The function \(p_\alpha\) is called \(\alpha\)-spaces, and a distance between A and B. It is easy to see that \(p_\alpha\) is non decreasing function of \(\alpha\). We shall also define an order of the family \(W(X)\), which characterizes accuracy of a given quantity.
Definition 2.4 Let A, B ∈ W(x). An approximate quantity A is more accurate than B, denoted by A ⊆ B, iff A(x) ≤ B(x), for each x ∈ X.

Definition 2.5 Let X be an arbitrary set and Y be any metric linear space. F is called a fuzzy mapping if F is mapping from the set X into W(Y), i.e., F(x) ∈ W(Y) for each x ∈ X.

A fuzzy mapping F is a fuzzy subset on X x Y with membership function F(x,y). The function value F(x,y) is grade of membership of y in F(x).

Let A ∈ F(X), B ∈ F(Y), the fuzzy set $F^{-1}(B)$ in F(X), is defined as $F^{-1}(B) = \{x ∈ X : F(x) ∈ B\}$.

First of all we shall give here the basic properties of α-space and α-distance between some approximate quantities.

Lemma 2.1: Let x ∈ X, A ∈ W(X), and \{x\} be a fuzzy set with membership function equal a characteristic function of set \{x\}. If \{x\} is subset of A then $p_\alpha(x,A) = 0$ for each $\alpha ∈ [0,1]$.

Lemma 2.2: $p_\alpha(x,A) ≤ d(x,y) + p_\alpha(y,A)$ for any x, y ∈ X.

Lemma 2.3: If \{x_0\} is subset of A, then $p_\alpha(x_0,B) ≤ D_\alpha(A,B)$ for each B ∈ W(X).

Lemma 2.4: Let (X,d) be a complete metric space, T be a fuzzy mapping from X into W(X), then there exists $x_1 ∈ X$ such that \{x_1\} ⊂ T{\{x_0\}}.

Lemma 2.5: Let A, B ∈ W(X). Then for each \{x\} ⊂ A, there exists \{y\} ⊂ B such that $D(\{x\}, \{y\}) ≤ D(A,B)$.

Definition (2.6): An intuitionist fuzzy set (i-fuzzy set) A of X is an object having the form $A = (A_1, A_2)$, where $A_1, A_2 ∈ [0,1]$ and $A_1(x) + A_2(x) ≤ 1$ for each $x ∈ X$. We denote by IFS(X) the family of all i-fuzzy sets of X.

Definition (2.7): Let $x_α$ be a fuzzy point of X. We will say that $x_α$ is a fixed fuzzy point of the fuzzy mapping F over X if $x_α ⊆ F(x)$. In particular and according to 2, if \{x\} ⊂ F(x), we say that x is a fixed point of F.

Remark 2.1: Notice $[x_\alpha] ⊂ A$ if and only if $x_0 ⊂ A_1$.
Main Results

Theorem 3.1: Let (X, d) be a complete metric space. Let F be continuous fuzzy mapping from X into $W_\alpha(X)$ satisfying the following condition: There exists $K \in (0,1]$ such that

$$d(x, y) \leq K \left(d(x, y) + p_\alpha(x, F(x)) \right)$$

for all $x, y \in X$ with $x \neq y$, and

$$d(x, y) \leq K \left(d(x, y) + p_\alpha(x, F(y)) \right)$$

Then there exists $x \in X$ such that x_0 is a fixed fuzzy point of F if and only if $x_0 \in G(x)$ with

$$\sum_{n=1}^{\infty} K^n d(x_0, x_1) < \infty$$

for $\alpha \in (0,1]$. In particular if $\alpha = 1$ then x is a fixed point of F.

Proof: If there exists $x \in X$ such that $x_0 \in G(x)$, i.e. $x_0 \subset G(x)$, then $\sum_{n=1}^{\infty} K^n d(x_0, x_1) = 0$. Let $x_0 \in K$ and suppose that there exists $x_1 \in (F(x_0))_\alpha$ such that

$$d(x_1, x_2) = p_\alpha(x_1, F(x_1)) \leq D_\alpha(F(x_0), F(x_1))$$

By induction we construct a sequence $\{x_n\}$ in X such that $x_n \subset (F(x_{n+1}))_\alpha$, and $d(x_n, x_{n+1}) \leq d(x_0, x_1)$. Since K is given to be the non-decreasing, so

$$d(x_{n+1}, x_{n+2}) \leq K \{d(x, y)\}$$

Therefore the sequence $\{x_n\}$ is a Cauchy sequence in X and X is complete therefore $\{x_n\}$ converges to $x \in X$. By the help of lemma 2.1 and 2.2 we have
\[p_\alpha(x, F(x)) \leq d(x, x_n) + p_\alpha(x_n, F(x)) \leq d(x, x_n) + D_\alpha(F(x_{n-1}), F(x)) \leq d(x, x_n) + Kd(x_{n-1}, x) \]
 Consequently, \(p_\alpha(x, F(x)) = 0 \), and by lemma 2.1 \(x_\alpha \subseteq F(x) \) Clearly \(x_\alpha \) is a fixed fuzzy point of the fuzzy mapping \(F \) over \(X \). In particular if \(\alpha = 1 \) then \(x \) is a fixed point of \(F \). Now we will generalize this theorem for common fixed point.

Theorem 3.2: Let \((X, d)\) be a complete metric space. Let \(T \) and \(S \) be continuous fuzzy mappings from \(X \) into \(W_\alpha(X) \) and \(F : X \to W_\alpha(X) \) be a mapping such that
\[\{ M(x, y) \mid K \phi \left[D_a(Sx, Ty), D_a(Sx, Fx), D_a(Ty, Fy), D_a(Fx, Ty) \right] \leq M(x, y) \leq \frac{D_a(Sx, Ty) + D_a(Fx, Ty)}{1 + D_a(Sx, Ty) - D_a(Fx, Ty)} \]
Where \(K \) is non-decreasing function such that \(K : [0, \infty) \to [0, \infty) \).

\(K(0) = 0 \) and \(K(t) < t \) \(\forall t \in (0, \infty) \), \(\alpha \in (0, 1] \) and then \(\exists x \in X \) such that \(x_\alpha \) is a common fixed fuzzy point of \(S, T \) and \(F \) if and only if \(x_0, x_1 \in X \) such that
\[\sum_{n=1}^{\infty} K^n d(x_0, x_1) < \infty. \]
In particular if \(\alpha = 1 \), then \(x \) is a common fixed point of \(S, T \) and \(F \).

Proof: Let for \(x_0 \in X \) there exists \(x_1 \) and \(x_2 \) such that \(x_1 \in (S(x_1))_\alpha \subset (F(x_0))_\alpha \) and \(x_2 \in (T(x_2))_\alpha \subset (F(x_1))_\alpha \). By induction one can construct a sequence \(\{x_n\} \) in \(X \) such that
\[x_{2n+1} \in \left(Sx_{2n+1}\right)_\alpha \subset \left(F(x_{2n+1}\right)_\alpha . \text{And} \ x_{2n+2} \in \left(Tx_{2n+2}\right)_\alpha \subset \left(F(x_{2n+2}\right)_\alpha . \]

Since \(K \) is given to be non-decreasing. So
\[d(x_n, x_{n+1}) \leq D_\alpha(F(x_{n-1}), F(x_n)) \leq K\times M(x_{n-1}, x_n) \]
\[= K \phi \left[D_a(Sx_{n-1}, Tx_n), D_a(Sx_{n-1}, Fx_n), D_a(Tx_n, Fx_n), D_a(Fx_{n-1}, Tx_n), \right] \]
\[= K \phi \left[d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_{n-1}, x_n) \right] \]
\[= K \{d(x_{n-1}, x_n)\} \]
Therefore
\[d(x_{n-1}, x_{n+1}) \leq Kd(x_{n-1}, x_n) = Kd_\alpha(F(x_{n-2}), F(x_{n-1})) \leq K^2d(x_{n-2}, x_{n-2}) \leq \ldots \leq K^nd(x_0, x_1) \]
\[\Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+1}) + \ldots + d(x_{n+m-1}, x_{n+m}) \leq K^md(x_0, x_1) + \ldots + K^{n-1}d(x_0, x_1) = \sum_{j=0}^{m-1} K^j d(x_0, x_1) \]
Since \(\sum_{n=1}^{\infty} K^n d(x_0, x_1) \leq \infty \) it follows that there exists \(u \) such that \(d(x_n, x_{n+m}) < u \in X \). Therefore the sequence \(\{x_n\} \) is a Cauchy sequence in \(X \). Since \(X \) is complete, \(\{x_n\} \) converges to \(x \in X \) and \(\left(Sx_{2n+1}\right)_\alpha , \left(Tx_{2n+2}\right)_\alpha \) also converges on \(X \).
Since \(\{S, F\} \) and \(\{T, F\} \) are weakly commuting mappings, so \(p_\alpha(x, F(x)) \leq d(x, x_n) + p_\alpha(x_n, F(x)) \leq d(x, x_n) + D_\alpha(F(x_{n-1}), F(x)) \leq d(x, x_0) + Kd(x_{n-1}, x) \). Consequently, \(p_\alpha(x, F(x)) = 0 \) and by lemma 2.1, \(x_\alpha \subseteq F(x) \).

Conclusion

Clearly \(x_\alpha \) is a common fixed fuzzy point of the fuzzy mapping \(F, S \) and \(T \) over \(X \). In particular if \(\alpha = 1 \) then \(x \) is a common fixed point of \(F, S \) and \(T \).

References