9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Utilization of industrial waste in producing natural fiber reinforced green composites

Author Affiliations

  • 1Department of Physics, G N Khalsa College of Arts, Science & Commerce, Matunga, Mumbai- 400 019, India
  • 2Polymer Physics Lab, Department of Physics, University of Rajasthan, Jaipur, India

Res. J. Material Sci., Volume 7, Issue (3), Pages 7-12, September,16 (2019)

Abstract

Oil-palm fibers (OPF) were treated with acrylic acid and Toulene Diisocynate (TDIC) and were used as reinforcement in resin matrix. Differential Scanning Calorimeter (DSC) was used to evaluate activation energy of crystallization, crystallization temperature and glass transition temperature. Rate of crystallization has been explained using the term thermal stability. Thermal diffusivity and effective thermal conductivity (ETC) of the composites was measured by Transient Plane Source Technique (TPS). A comparative study of model and experimental results has been done. Scanning electron microscopy (SEM) has been used for Surface study of composites.

References

  1. Brahmakumar M., Pavithran C., Pillai R.M. (2005)., Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites., Comp Sci Tech, 65, 563-569.
  2. Panthapulakkal S., Zereshkian A. and Sain M. (2005)., Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites., Bioresource Tech., 97, 265-272.
  3. Arbelaiz A., Fernandez B., Cantero G., Llano-Ponte R., Valea A. and Mondragon I. (2005)., Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization., Composites Part A: applied science and manufacturing, 36(12), 1637-1644.
  4. Cantero G., Arbelaiz A., Llano-Ponte R. and Mondragon I. (2003)., Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites., Composites science and technology, 63(9), 1247-1254.
  5. Bledzki A.K. and Gassan J. (1999)., Composites Reinforced with Cellulose Based Fibres., Progress in Polymer Science, 24, 221-274.
  6. Westerlind B.S. and Berg J.C. (1988)., Surface energy of untreated and surface‐modified cellulose fibers., Journal of Applied Polymer Science, 36(3), 523-534.
  7. Vazguez A., Riccieri J. and Carvalho L. (1999)., Interfacial Properties and Initial Step of Water Sorption in Unidirectional Unsaturated Polyester/Vegetable Fiber Composites., J. Polymer Composites, 20(1), 29-37.
  8. Maldas D., Kokta B.V., Raj R.G. and Daneault C. (1988)., Improvement of the mechanical properties of sawdust wood fibre—polystyrene composites by chemical treatment., Polymer, 29(7), 1255-1265.
  9. Maldas D., Kokta B.V. and Daneault C. (1989)., Influence of coupling agents and treatments on the mechanical properties of cellulose fiber–polystyrene composites., Journal of Applied Polymer Science, 37(3), 751-775.
  10. Joseph S., Sreekala M.S., Oommen Z., Koshy P. and Thomas S. (2002)., A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres., Composites Science and Technology, 62(14), 1857-1868.
  11. Gauthier R., Joly C., Coupas A.C., Gauthier H. and Escoubes M. (1998)., Interfaces in polyolefin/cellulosic fiber composites: Chemical coupling, morphology, correlation with adhesion and aging in moisture., Polymer Composites, 19(3), 287-300.
  12. Sreekala M.S., Kumaran M.G. and Thomas S. (2002)., Water sorption in oil palm fiber reinforced phenol formaldehyde composites., Composites Part A, 33, 763-777.
  13. Sreekala M.S., Kumaran M.G., Joseph S., Jacob M. and Thomas S. (2000)., Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance., Applied Composite Materials, 7(5-6), 295-329.
  14. Carslaw H.S. and Jaeger J.C. (1959)., Conduction of heat in solids., Oxford: Clarendon Press, 2nd ed.; 510.
  15. Agrawal R., Saxena N.S., Mathew G., Thomas S. and Sharma K.B. (2000)., Effective thermal conductivity of three‐phase styrene butadiene composites., Journal of Applied Polymer Science, 76(12), 1799-1803.
  16. Agrawal R., Saxena N.S., Sharma K.B., Thomas S. and Sreekala M.S. (2000)., Activation energy and Crystallization Kinetics of Untreated and Treated oil Palm Fiber Reinforced Phenol formaldehyde Composites., Material Science and engineering A., 277, 77-82.
  17. Agrawal R., Saxena N.S., Sreekala M.S. and Thomas S. (2000)., Effect of treatment on the thermal conductivity and thermal diffusivity of oil‐palm‐fiber‐reinforced phenolformaldehyde composites., Journal of Polymer Science Part B: Polymer Physics, 38(7), 916-921.
  18. Kissinger H.E. (1956)., Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis., J Res NBS, 57(4), 217-221.
  19. Matusita K., Komatusa T. and Yokota R. (1984)., Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials., J. Mat. Sci., 19(1), 291-296.
  20. Mahadevan S., Giridhar A. and Singh A.K. (1986)., Calorimetric measurements on as-sb-se glasses., Journal of Non-Crystalline Solids, 88(1), 11-34.
  21. Hrubý A. (1972)., Evaluation of glass-forming tendency by means of DTA., Czechoslovak Journal of Physics B, 22(11), 1187-1193.
  22. Agari Y., Ueda A. and Nagai S. (1993)., Thermal conductivity of a polymer composite., Journal of Applied Polymer Science, 49(9), 1625-1634.
  23. Agari Y., Tanaka M., Nagai S. and Uno T. (1987)., Thermal conductivity of a polymer composite filled with mixtures of particles., Journal of Applied Polymer Science, 34(4), 1429-1437.
  24. Agari Y. and Uno T. (1986)., Estimation on thermal conductivities of filled polymers., Journal of Applied Polymer Science, 32(7), 5705-5712.
  25. Braggeman D.A.G. (1935)., Calculation of Various Physical Constants of Heterogeneous Substances. Parts I, Dielectric Constant and Conductivity of Mixtures of Isotropic Substances., Ann. Phys, 24, 636-639.
  26. Maxwell J.C. (1892)., A treatise on electricity and magnetism., Clarendon Press, Oxford, 1, 194-216.
  27. Babanov A.A. (1957)., Methods for calculation of thermal conduction coefficients of capillary porous materials., Sov. Phys. Technol. Phys., 2(3), 476-484.
  28. Brailsford A.D. and Major K.G. (1964)., The thermal conductivity of aggregates of several phases, including porous materials., Br. J. Appl. Phys, 15, 313-319.
  29. Verma L.S., Shortriya A.K., Singh R. and Choudhary D.R. (1991)., Thermal conduction in two-phase materials with spherical and non-spherical inclusions., J. Phys. D: Appl. Phys, 24(10), 1729-1737.
  30. Hamilton R.L. and Crosser O.K. (1962)., Thermal conductivity of heterogeneous two-component systems., Industrial & Engineering chemistry fundamentals, 1(3), 187-191.
  31. Xue Q.Z. (2005)., Model for thermal conductivity of carbon nanotube-based composites., Physica B: Condensed Matter, 368(1-4), 302-307.
  32. Tye R.P. (1985)., Factors influencing thermal conductivity measurements on composites (a review)., High Temperatures. High Pressures, 17(3), 311-316.
  33. Sreekala M.S., Kumaran M.G. and Thomas S. (1997)., Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties., Journal of Applied Polymer Science, 66(5), 821-835.