International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Synthesis and studies of sputter deposited ZnO films

Author Affiliations

  • 1Gujarat Forensic Science University, Sector-9, Gadhinagar-382007, Gujarat, India
  • 2McMaster Manufacturing Research Institute, Mech. Eng. Dept., McMaster University, Main Street West, Hamilton, Ontario, L8S 4L7, Canada

Res. J. Material Sci., Volume 5, Issue (2), Pages 13-16, February,16 (2017)


This paper is aimed to synthesize reactive sputtered ZnO coatings at altered RF powers of 50W, 75W, 100W and 125W and study itís, optical structural and wettability properties. For characterization of ZnO coatings, X-ray Diffractometer (XRD) technique was used. XRD graphs indicate evolution of (002) peak and (100) peak for ZnO thin films with an increment of RF power from 50W to 125W. ZnO thin films become well crystalline with rising the RF power and preferred orientation of ZnO along (002) texture is observed. Surface energy and contact angle of ZnO films were determined by contact angle goniometer. UV-Vis-NIR spectrophotometer was utilized to differentiate optical properties of zinc oxide films.


  1. Gau H., Herminghaus S., Lenz P. and Lipowsky R. (1999)., Liquid Morphologies on Structured Surfaces: From Microchannels to Microchips., Science, 283(5398), 46-49.
  2. Feng X. and Jiang L. (2006)., Design and creation of superwetting/antiwetting surfaces., Adv. Mater., 18(23), 3063-3078.
  3. Lu J., Huang K., Chen X., Zhu J., Meng F. and Sun Z. (2010)., Reversible wettability of nanostructured ZnO thin films by sol-gel method., Applied Surface Science, 256(14), 4720-4723.
  4. Abbott N.L., Folkers J.P., Whitesides G.M. and Drive N.F. (1992)., Manipulation of the Wettability of surfaces on the 0.1 to 1 micrometer scale through micromachining and molecular self-assembly., Department of chemistry, Harvard University, Cambridge.
  5. Li M., Zhai J., Liu H., Song Y., Jiang L. and Zhu D. (2003)., Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films., J.Phys. Chem. B, 107(37), 9954-9957.
  6. Abbott S., Ralston J., Reynolds G. and Hayes R. (1999)., Reversible wettability of photoresponsive pyrimidine-coated surfaces., Langmuir, 15(26), 8923-8928.
  7. Chen W., Fadeev A.Y., Hsieh M.C., Youngblood J., Mccarthy T.J., Chen W., Fadeev A.Y., Hsieh M.C., Didem O., Youngblood J. and Mccarthy T.J. (1999)., Ultrahydrophobic and Ultralyophobic Surfaces : Some Comments and Examples., Langmuir, 15(10), 3395-3399.
  8. Mao-Gang G., Xiao-Liang X., Zhou Y., Yan-Song L. and Ling L. (2010)., Superhydrophobic surfaces via controlling the morphology of ZnO micro/nano complex structure., Chinese Physics B, 19(5), 1-6.
  9. Subedi D., Madhup D., Sharma A., Joshi U. and Huczko A. (2012)., Study of the wettability of ZnO nanofilms., , Int. Nano Lett., 1(2), 117-122.
  10. Yin L.W., Sen Li M., Bando Y., Golberg D., Yuan X. and Sekiguchi T. (2007)., Tailoring the optical properties of epitaxially grown biaxial ZnO/Ge, and coaxial ZnO/Ge/ZnO and Ge/ZnO/Ge heterostructures., Adv. Funct. Mater., 17(2), 270-276.
  11. Richters J.P., Dev A., Muller S., Niepelt R., Borschel C. and Voss T. (2009)., Influence of metallic coatings on the photoluminescence properties of ZnO nanowires., physica status solidi (RRL)-Rapid Research Letters, 3(5), 166-168.
  12. Huang M.H., Wu Y., Feick H., Weber E. and Yang P. (2001)., Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport., Advanced Materials, 13(2), 113-116.
  13. Yang Z.X., Zhu F., Zhou W.M. and Zhang Y.F. (2005)., Novel nanostructures of β-Ga 2 O 3 synthesized by thermal evaporation., Phys. E Low-Dimensional Syst. Nanostructures, 30(1), 93-95.
  14. Wu J.J., Wu J.J., Liu S.C. and Liu S.C. (2012)., Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition., Advanced materials, 21(5), 1-3.
  15. Feng X., Feng L., Jin M., Zhai J., Jiang L. and Zhu D. (2004)., Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films., , J. Am. Chem. Soc., 126(1), 62-63.
  16. Pan Z.W., Dai Z.R. and Wang Z.L. (2001)., Nanobelts of Semiconducting Oxides., Science, 291(5510), 1947-1949.
  17. Srivastava M., Basu B.B.J. and Rajam K.S. (2011)., Improving the hydrophobicity of ZnO by PTFE incorporation., J. Nanotechnol, 1-6. doi:10.1155/2011/392754
  18. Pearton S.J., Norton D.P., K. Ip, Heo Y.W. and Steiner T. (2004)., Recent advances in processing of ZnO., AVS, 22(3), 932-948.
  19. Wenzel S.W. and White R.M. (1988)., A Multisensor Employing an Ultrasonic Lamb-Wave Oscillator., IEEE Trans. Electron Devices, 35(6), 735-743.
  20. Flickyngerova S., Shtereva K., Stenova V., Hasko D., Novotny I., Tvarozek V., Sutta P. and Vavrinsky E. (2008)., Structural and optical properties of sputtered ZnO thin films., Appl. Surf. Sci., 254(12), 3643-3647.
  21. Ondo-Ndong R., Pascal-Delannoy F., Boyer A., Giani A. and Foucaran A. (2003)., Structural properties of zinc oxide thin films prepared by R.F. magnetron sputtering., Mater. Sci. Eng. B, 97(1), 68-73.
  22. Rosa A.M., da Silva E.P., Amorim E., Chaves M., Catto A.C., Lisboa-Filho P.N. and Bortoleto J.R.R. (2012)., Growth evolution of ZnO thin films deposited by RF magnetron sputtering., J. Phys. Conf. Ser., 370(1), 012020.
  23. Wu K.R., Wang J.J., Liu W.C., Chen Z.S. and Wu J.K. (2006)., Deposition of graded TiO2 films featured both hydrophobic and pho to-induced hydrophilic properties., , Appl. Surf. Sci., 252(16), 5829-5838. doi:10.1088/1742-6596/370/1/012020
  24. Manifacier J.C., Gasiot J. and Fillard J.P. (1976)., Simple Method for the Determination of the Optical Constants., Journal of Physics E: Scientific Instruments, 9(11), 1002-1004.
  25. Ekem N., Korkmaz S., Pat S., Balbag M.Z., Cetin E.N. and Ozmumcu M. (2009)., Some physical properties of ZnO thin films prepared by RF Magnetron sputtering techniques., Int. J. Hydrogen Energy, 34(12), 5218-5222.
  26. Kim J.H., Lee M., Lim T.Y., Hwang J.H., Kim E. and Kim S.H. (2010)., Fabrication of transparent superhydrophobic ZnO thin films by a wet process., J. Ceram. Process. Res., 11(2), 259-262.
  27. Ismail and Abdullah M.J. (2013)., The structural and optical properties of ZnO thin films prepared at different RF sputtering power., J. King Saud Univ.-Sci., 25(3), 209-215.
  28. Khudhayer W.J., Sharma R. and Karabacak T. (2009)., Hydrophobic metallic nanorods with Teflon nanopatches., Nanotechnology, 20(27), 275302.