Structural, Morphological studies and Magnetic Properties of Ni Substituted Nano Crystalline Copper-Zinc Ferrites Synthesized by Citrate-Gel Auto Combustion Technique

V.V. Awati
Department of Physics, C.T. Bora College, Shirur, Dist.: Pune, MS, India
vidyadharawati@gmail.com

Available online at: www.isca.in, www.isca.me
Received 15th February 2016, revised 27th March 2016, accepted 8th April 2016

Abstract

The nano crystalline Ni doped Cu-Zn ferrites having compositional formula Ni$_{1}$Cu$_{0.95}$Zn$_{0.05}$Fe$_{2}$O$_{4}$ (where x=0.0, 0.2, 0.4 and 0.6) were synthesized by Citrate-Gel Auto Combustion method at a low temperature (400°C). Analysis of the X-Ray diffraction pattern of all the samples confirmed the formation of single phase cubic final structure with an average crystallite size 38-80 nm. In the present work, the effect of nano structured particle size and Ni concentration on parameters such as bulk density, x-ray density, porosity and bond length are discussed with the help of XRD data. FE-SEM images showed homogeneous and well distributed crystallized grains of ferrite material. The composition dependence of resistivity is studied with two-probe apparatus. The saturation magnetization and remnant magnetization is found to show a increasing behavior, coercivity decreases while Y-K angle shows increasing behavior with increase of Ni content.

Keywords: Citrate-gel auto combustion method, FE-SEM, DC Resistivity, Magnetic properties.

Introduction

Spinelle ferrite materials have got commercial importance because of their excellent magnetic and electric properties\(^1\). Polycrystalline ferrites are mainly known for their technological applications ranging from microwave to radio frequencies as they are very good dielectric materials\(^2\). The important characteristics of ferrites are high resistivity, low magnetic and dielectric losses\(^3\) which make them suitable for high frequency applications. Synthesis of nano-ferrites, particularly spinel ferrites, characterized by a low size distribution is crucial due to their outstanding electrical and magnetic properties and extensive practical applications in information storage systems, ferro-fluid technology, magneto calorific refrigeration and medical diagnostics\(^4\). They are sometimes called multiferrics due to the dielectric behavior. They can be used in many devices such as Phase Shifter, high frequency transformer cores, switches, resonators, computers, TVs and mobile phones\(^5\). The electrical properties of ferrites are dependent on many factors such as the route of preparation, composition of constituents, grain structure or size and the amount and type of substitution\(^6\). The properties of nano materials are notably diverse from that their bulk counter-part.

The transport properties of the nano-materials are mainly confined by the grain boundaries than by the grain itself\(^7\). And because of this, the magnetic materials have wide range of applications and are replacing conventional materials. The Citrate method is utilized to synthesize the complex materials rapidly. The simplicity of process lies in its time saving and energy consumption over the traditional methods. Nano size ferrites can be prepared by various methods including glass ceramic methods\(^8\), Hydrothermal method, Ultrasonic cavitations approach\(^9\), Reverse micelle technique\(^10\), Mechanical milling, Radio frequency plasma torch\(^11\), Sol-Gel method\(^12\), Precursor techniques\(^13\), and co-precipitation method\(^14\).

Methodology

Synthesis: Inspected ferrite samples were prepared by low temperature citrate-gel auto combustion method, which was already explained in our previous publication\(^16\).

Characterization: The structural characterization of the all prepared samples were carried out by x-ray diffraction (XRD) and it confirms the well defined single phase spinel structure. XRD data were taken at room temperature using Cu-K\(_{\alpha}\) radiation. The Scanning Electron Microscope (SEM) JEOL JSM-6360A was used to study the morphology and to estimate grain size. The electrical resistivity measurements were carried out by two probe method at room temperature. Hysteresis Tracer was utilized to study the magnetic properties of the samples in the field of 10 kOe at room temperature.

Results and Discussion

XRD Analysis: Figure-1 shows the XRD patterns for the sample of Ni doped Cu-Zn ferrites having chemical formula Ni$_{1}$Cu$_{0.95}$Zn$_{0.05}$Fe$_{2}$O$_{4}$. The figure shows a typical cubic spinel structure. The diffraction peaks are broad because of the nanometer size of the crystallites.
The presence of the Ni ions causes significant changes in the structural properties of the Ni_xCu_{0.1}Zn_(0.9-x)Fe₂O₄ ferrite. The X-ray diffraction studies clearly showed the formation of single phase spinel structure and the grain size within nano-scale. The lattice constant and porosity shows variation, while the X-ray density increases and bulk density shows variation with increasing Ni content¹⁷⁻¹⁹. The lattice constant is found to decrease from 8.45 Å to 8.38 Å with increasing the Ni content at 400°C. Whereas, the grain size decreases from 80 nm to 38 nm on increasing Ni content as depicted in Table-1. The tetrahedral ionic radii (r_A) is observed smaller as compared to the octahedral ionic radii (r_B). The tetrahedral ionic radii (r_A) is found to decrease from 0.4794 Å to 0.4645 Å with Ni content. Octahedral ionic radii (r_B) is found to decrease from 0.7625 Å to 0.7453 Å with Ni content. Similarly the bond lengths on tetrahedral (A-O) is smaller in magnitude than the corresponding bond lengths on octahedral (B-O). The bond lengths on tetrahedral (A-O) is found to decrease from 1.8295 Å to 1.8146 Å with Ni content. The bond lengths on octahedral (B-O) is found to decrease from 2.1125 Å to 2.0954 Å²⁰. The hopping lengths on tetrahedral ionic radii (L_A) is observed greater as compared to the hopping lengths on octahedral ionic radii (L_B). The hopping lengths on tetrahedral ionic radii (L_A) is found to decrease from 3.6590 Å to 3.6292 Å and the hopping lengths on octahedral ionic radii (L_B) is found to decrease from 2.9876 Å to 2.9632 Å as depicted in Table-2.

Table 1: A summary of Lattice Parameter, Grain Size and Theoretical density of Ni_xCu_{0.1}Zn_(0.9-x)Fe₂O₄ (X=0.2 to 0.6) nanoferrites calculated from XRD data

<table>
<thead>
<tr>
<th>Composition (X)</th>
<th>Lattice parameter (a) Å<sup>0</sup></th>
<th>Theoretical Lattice parameter (a<sub>th</sub>) Å<sup>0</sup></th>
<th>Grain size (d) nm</th>
<th>Theoretical density (D) Gm/cm<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>X = 0.2</td>
<td>8.4503</td>
<td>7.5457</td>
<td>80</td>
<td>31.830</td>
</tr>
<tr>
<td>X = 0.4</td>
<td>8.396</td>
<td>7.47039</td>
<td>56</td>
<td>21.878</td>
</tr>
<tr>
<td>X = 0.6</td>
<td>8.3814</td>
<td>7.4360</td>
<td>38</td>
<td>23.255</td>
</tr>
</tbody>
</table>

Table 2: A summary of Bulk density, X-ray density, Porosity, bond length etc. of Ni_xCu_{0.1}Zn_(0.9-x)Fe₂O₄ (X=0.2 to 0.6) nanoferrites calculated from XRD data

<table>
<thead>
<tr>
<th>Composition X</th>
<th>Bulk Density (P<sub>b</sub>) Gm/cc</th>
<th>X-ray density (P<sub>x</sub>) Gm/cc</th>
<th>Porosity (P) (%)</th>
<th>Tetrahedral Ionic Radii (r<sub>A</sub>) Å<sup>0</sup></th>
<th>Octahedral Ionic Radii (r<sub>B</sub>) Å<sup>0</sup></th>
<th>Bond lengths on tetrahedral (A-O) Å<sup>0</sup></th>
<th>Bond lengths on octahedral (B-O) Å<sup>0</sup></th>
<th>Hopping lengths on tetrahedral (L<sub>A</sub>) Å<sup>0</sup></th>
<th>Hopping lengths on octahedral (L<sub>B</sub>) Å<sup>0</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>X = 0.2</td>
<td>1.60415</td>
<td>5.273</td>
<td>0.6958</td>
<td>0.4794</td>
<td>0.7625</td>
<td>1.8295</td>
<td>2.1125</td>
<td>3.6590</td>
<td>2.9876</td>
</tr>
<tr>
<td>X = 0.4</td>
<td>1.4907</td>
<td>5.346</td>
<td>0.7211</td>
<td>0.4677</td>
<td>0.749</td>
<td>1.8177</td>
<td>2.099</td>
<td>3.6356</td>
<td>2.9684</td>
</tr>
<tr>
<td>X = 0.6</td>
<td>1.58904</td>
<td>5.343</td>
<td>0.7026</td>
<td>0.46457</td>
<td>0.7453</td>
<td>1.81462</td>
<td>2.0954</td>
<td>3.6292</td>
<td>2.9632</td>
</tr>
</tbody>
</table>
Figure-2 shows the SEM image of Ni$_x$Cu$_{0.1}$Zn$_{0.9}$Fe$_2$O$_4$ ferrites with 0.2 concentration of Ni for sample sintered at 400°C. It is obvious that the synthesized samples have large clusters of ferrites formed by agglomeration of small particles of nearly uniform in size with spherical shape. Similar results are reported for Cu Substituted Mn-Zn soft nano ferrites by Anwar et al. The above histogram of the sample shows the particle distribution is maximum in the range 40 nm to 80 nm. The length distribution window gives us mean particle size 68.30 nm with standard deviation 24.22.

Resistivity Measurements: DC resistivity of all samples was measured using a two-probe method as shown in Figure-3(a, b). It is observed that DC resistivity shows a compositional variation with temperature as shown in Table-3. This variation is explained by the location of the cations in the spinel ferrite. The observed variation in resistivity can be understood by considering the hopping mechanism Fe$^{2+}$ ↔ Fe$^{3+}$. The increase in Ni$^{2+}$ ions at the B site leads to replacement of Fe$^{3+}$ ions at B site, leading to a decrease of ferrous ions formed. Although the Ni$^{2+}$ ions never participate in the conduction mechanisms, they limit the degree of Fe$^{2+}$ ↔ Fe$^{3+}$ transfer, hence obstructing electron hopping and resulting in change in resistivity. The similar nature of resistivity has been explained earlier. The conduction in the samples is due to grain boundaries. The high values of DC electrical resistivity support this result.
Table-3
Resistivity and Conductivity measurements

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Sample composition</th>
<th>Constant temperature or Voltage</th>
<th>Resistance (Ω)*10^10</th>
<th>Resistivity Ω-cm*10^-10</th>
<th>Conductivity Per Ω-cm*10^-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X=0.2</td>
<td>133V</td>
<td>0.2301</td>
<td>0.6689</td>
<td>1.4949</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21°C</td>
<td>0.273</td>
<td>0.7937</td>
<td>1.2599</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29°C</td>
<td>0.2780</td>
<td>0.8082</td>
<td>1.2373</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55°C</td>
<td>0.193</td>
<td>0.5611</td>
<td>1.7822</td>
</tr>
</tbody>
</table>

Table-4
Magnetic properties of NiₓCu₀.₁Zn₀.₉₋ₓFe₂O₄ (X=0.2) nano ferrites

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Zn content(x)</th>
<th>Ms (emu/gm)</th>
<th>Mr (emu/gm)</th>
<th>Hc (Oe)</th>
<th>Mr/Ms</th>
<th>Bohr Magneton</th>
<th>Y-K Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.2</td>
<td>012.732</td>
<td>003.451</td>
<td>2010.031</td>
<td>0.27108</td>
<td>0.54593</td>
<td>40.742</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>025.489</td>
<td>008.632</td>
<td>1679.882</td>
<td>0.33866</td>
<td>1.08678</td>
<td>54.279</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>053.991</td>
<td>023.533</td>
<td>11290.81</td>
<td>0.43581</td>
<td>2.28908</td>
<td>57.578</td>
</tr>
</tbody>
</table>

Magnetic Properties: The saturation magnetization and remnant magnetization is found to show a increasing behavior, corestivity decreases while Y-K angle shows increasing behavior with increase of Ni content. The magnetic properties of the sample are mainly dominated by Zn²⁺ non magnetic ions replacing Ni²⁺ ions as well as migration of Fe³⁺ ions from octahedral to tetrahedral sites. Low field hysteresis loop shows a decreasing trend in corestivity with Ni contents due to increased magnetic softness. All the coersivity value were sufficiently low to confirm that the ferrite was soft ferrite. Y-K angle shows increasing behavior with increase of Ni content. Bohr Magneton shows increasing behavior with Ni content. Bohr magneton shows maximum value of 2.2890 at x=0.6 as depicted in Table-4.

![Figure-4](Magnetic hysteresis loops of NiₓCu₀.₁Zn₀.₉₋ₓFe₂O₄ (X=0.2) nano ferrites)

![Figure-5(a)](Variation of Y-K Angle with Zn content)

![Figure-5(b)](Variation of magnetic moment with Zn content)
Conclusion

i. X-ray diffraction pattern shows that studied samples confirms the formation of single phase cubic spinel structure. ii. Ferrites composition of Ni₇Cu₀₁₋ₓZnₓ₀.₉₃₋ₓFe₂O₄ with an average crystallite size between 38 to 80 nm were synthesized through citrate Gel-Auto combustion method. iii. The SEM results of the sintered samples show that the grain boundary is temperature dependent. iv. DC electrical resistivity measurements prove that resistance of the samples is of the order of 10¹⁰ ohm indicating that material is like insulator and DC electrical resistivity varies with composition. v. For all samples, a ‘S’ like shape hysteresis curve was observed. The saturation magnetization (Mₛ) value is 12.732 emu/gm for x=0.2 at 400°C.

The prepared ferrite materials have high DC resistivity, low saturation magnetization. These results are capable for the use of these materials in high frequency functional device applications.

Acknowledgement

The author acknowledges Dr. K.C. Mohite, Principal, C. T. Bora College, Shirur, Dist.: Pune for Laboratory facility, SAIF, IIT, Bombay, Powai for SEM characterization facility, Department of Physics, Abasaheb Garware College, Pune for magnetic characterization.

References

