International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Chemical Synthesis and X-ray Study of M-type Hexagonal Nano Ferrite Powders

Author Affiliations

  • 1 Physics Department, Faculty of Science, Ibb University, Ibb, YEMEN

Res. J. Material Sci., Volume 2, Issue (2), Pages 1-5, April,16 (2014)


M-type hexagonal ferrites with composition SrFe12-yMg19-y/2 have been prepared by the co-precipitation method. The X-ray powder diffraction was employ to investigate their nanostructure constants. The X-ray data were analyzed using different softwares. The average values of lattice constants (a) and (c) are found in the range (5.867– 5.876) A and (22.918– 22.977) A respectively and the average crystallite size is found in the range 71 – 93 nm. SrFe11.5Mg0.518.5 sample is the critical concentration where it has the minimum value of (a) lattice prameter, the minimum value of crystallite size and the maximum value of lattice strain.


  1. Singhal S., Garg A.N. and Chandra K., J. Magn. Magn. Mater.,285, 193–198 (2005)
  2. Stefanescu M., Caizer C., Stoia M. and Stefanescu O., Acta Mater,54, 1249–1256 (2006)
  3. Gnanasangeetha D. and Sarala Thambavani D., ResearchJournal of Material Sciences,1(7), 1-8 (2013)
  4. Dishovske N., Petkov A., Nedkov I. and Razkazov I., IEEE Trans. Magn.,30, 969–971 (1994)
  5. Shrik B.T. and Buessem W.R., J. Appl. Phys., 40, 1294–1296 (1969)
  6. Smit J., Wijn H.P.J., Ferrites, Philip’s Tech. Library, New York, (1959)
  7. Tang X., Yang Y. and Hu K., J. Alloys Compd.,477, 488–492 (2009)
  8. Duan H.Z. and Li Q.L., J. Mater. Sci. Eng., 25, 179–183 (2007)
  9. Du Y.W., Ferrite, Jiangsu Science and Technology Press, Nanjing (1995)
  10. Rodriguez J.A. and Fernandez M., Garcia, John Wiley and Sons Inc, New York (2007)
  11. Goldman A., Modem Ferrite Technology, second edition, Springer Science Business Media Inc. (2006)
  12. Surrig C., Hempel K.A. and Bonnenberg D., Appl. Phys. Lett., 74, 2513 (1999)
  13. Abbas S.M., Chatterjee R., Dixit A.K., Kumar A.V.R. and Goel T.C., J. Appl. Phys., 101 (2007)
  14. Tabatabaie F., Fathia M.H., Saatchia A. and Ghasemi A., J. Alloys Compd.,474, 206–209 (2009)
  15. Ghasemi A. and Morisako A., J. Alloys Compd.,456, 485–491 (2008)
  16. Pignard S., Vincent H., Flavin E. and Boust F., J. Magn. Magn. Mater, 260, 437–446 (2003)
  17. Qiu J., Zhang Q. and Gu M., J. Appl. Phys.,98, 103905 (2005)
  18. Ounnunkad S. and Winotai P., J. Magn. Magn. Mater.,301, 292–300 (2006)
  19. Varadinov R., Nikolov V. and Peshev P., J. Cryst. Growth,131, 97–104 (1993)
  20. Albanese G., Deriu A., Lucchini E. and Slokar G., Appl. Phys. A Solids Surf., 26, 45–50 (1981)
  21. Xiansong Liu, Wei Zhong, Sen Yang, Zhi Yu, Benxi Guand Youwei Du, J. Magn. Magn. Mater.,238, 207–214 (2002)
  22. Ahmed M.A., Okasha N., Oaf M. and Kershi R.M., J. Magn. Magn. Mater., 314, 128–134 (2007)
  23. Asghar G. and Rehman M. Anis-ur-, J. Alloys Compd.,526, 85–90 (2012)
  24. Gubicza J., Nauyoks S., Balogh L., Zerda T.W. and Ungαr T., J. Materials Research, 221, 314 (2007)
  25. Zhong W., Ding W., Zhang N., Hong J., Yan Q. and Du Y., J. Magn. Magn. Mater., 168, 196–202 (1997)
  26. Rezlescu L., Rezlescu E., Popa P.D. and Rezlescu N., J. Magn. Magn. Mater., 193, 288–290 (1999)