International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Tackling COVID-19 through possible plant-based science

Author Affiliations

  • 1Department of Botany, Fergusson College, Pune-411004, India

Res. J. of Pharmaceutical Sci., Volume 9, Issue (1), Pages 17-23, June,30 (2020)


The status of COVID-19 all over the world is pandemic. Plants have therapeutic action in curing the various diseases since ancient times. In order to tackle the various types of diseases, plants play an instrumental role. The present review article deals with the utility of plants in tackling COVID-19. After referring to a number of research papers on COVID-19, it can be concluded that plants are the best source of medicine against COVID-19 with fewer chances of side effects. Plants over the globe contain certain phytochemicals that have their action on the cell membrane of corona virus, facilitates the killing of its components and compositions of DNA. This would lead to the death of COVID-19.The epidemic models on the meteorological data of cities from countries like China, Italy, and Japan lead to the conclusion that such types of models cannot lead to a final prediction of an outbreak of corona viruses. More studies need to be conducted regarding the spread of COVID-19 and also on the evolution of such viruses to predict its epidemiological impact. We all need to come together to fight it out, and also we need to chalk out the ways to prevent future pandemics too.


  1. Schat K.A. (1985)., Characteristics of the Virus. In: Payne L.N. (eds) Marek's Disease., Developments in Veterinary Virology, Vol 1. Springer, Boston, MA
  2. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020)., COVID-19 infection: origin, transmission, and characteristics of human coronaviruses., JAR, 51(3), 410-415.
  3. Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., & Arledge, K. C. (2013)., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4., Cell Res., 23(8), 986.
  4. Zhong, N. S., Zheng, B. J., Li, Y. M., Poon, L. L. M., Xie, Z. H., Chan, K. H., & Liu, X. Q. (2003)., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People, The Lancet, 362(9393), 1353-1358.
  5. World Health Organization. (2020)., Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance, 2 March 2020 (No. WHO/COVID-19/laboratory/2020.4)., World Health Organization.
  6. Peiris, J. S. M., Guan, Y. & Yuen, K. Y. (2004)., Severe acute respiratory syndrome., Nat. med., 10(12), S88-S97.
  7. Pyrc, K., Berkhout, B. & Van Der Hoek, L. (2007)., Identification of new human corona viruses., Ex. R. antiinf. the., 5(2), 245-253.
  8. Cui, J., Li, F., & Shi, Z. L. (2019)., Origin and evolution of pathogenic corona viruses., Nature reviews Microbiology, 17(3), 181-192.
  9. Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020)., Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges., Int. J. Antimicro. Ag., 105924.
  10. Rahman, A. & Sarkar, A. (2019)., Risk Factors for Fatal Middle East Respiratory Syndrome Corona virus Infections in Saudi Arabia: Analysis of the WHO Line List, 2013-2018., AMJPH, 109(9), 1288-1293.
  11. Memish, Z. A., Zumla, A. I., Al-Hakeem, R. F., Al-Rabeeah, A. A., & Stephens, G. M. (2013)., Family cluster of Middle East respiratory syndrome coronavirus infections., New England Journal of Medicine, 368(26), 2487-2494.
  12. Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020)., A novel coronavirus outbreak of global health concern., The Lancet, 395(10223), 470-473.
  13. Marino, M., Angier, H., Valenzuela, S., Hoopes, M., Killerby, M., Blackburn, B., & DeVoe, J. E. (2018)., Medicaid coverage accuracy in electronic health records., Pre. Med. Rep., 11, 297-304.
  14. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., & Xing, X. (2020)., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia., N. Eng. J. Med., 382(10), 972-976
  15. Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M. & Cui, B. (2005)., Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms., J. Vir., 79(18), 11892-11900.
  16. Phan, L. T., Nguyen, T. V., Luong, Q. C., Nguyen, T. V., Nguyen, H. T., Le, H. Q., ... & Pham, Q. D. (2020)., Importation and human-to-human transmission of a novel coronavirus in Vietnam., N. Eng. J. Med., 382(9), 872-874.
  17. Pundarikakshudu Kilambi, and Niranjan S. Kanaki (2019)., Analysis and Regulation of Traditional Indian Medicines., Journal of AOAC International, 102(4), 977-978.
  18. Akram, M., Tahir, I. M., Shah, S. M. A., Mahmood, Z., Altaf, A., Ahmad, K., & Mehboob, H. (2018)., Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis and coxsackie virus: A systematic review., Phyto. Res., 32(5), 811-822.
  19. Scior, T., Bender, A., Tresadern, G., Medina-Franco, J. L., Martínez-Mayorga, K., Langer, T., ... & Agrafiotis, D. K. (2012)., Recognizing pitfalls in virtual screening: a critical review., JCIM, 52(4), 867-881.
  20. Moghadamtousi, S. Z., Nikzad, S., Kadir, H. A., Abubakar, S. & Zandi, K. (2015)., Potential antiviral agents from marine fungi: an overview., Marine drugs, 13(7), 4520-4538.
  21. Nagle, V., Gaikwad, M., Pawar, Y., & Dasgupta, S. (2020)., Marine Red Alga Porphyridium sp. as a Source of Sulfated Polysaccharides (SPs) for Combating against COVID-19., Marine drugs, 20(7), 3564-3569.
  22. Lahaye, M., & Ray, B. (1996)., Cell-wall polysaccharides from the marine green alga Ulva rigida (Ulvales, Chlorophyta)-NMR analysis of ulvan oligosaccharides., Carbo. Res., 283, 161-173.
  23. Husemann, E. (1968)., Chemistry and Enzymology of Marine Algal Polysaccharides., Von E. Percival und RH McDowell. Academic Press, London‐New York 1967. 1. Aufl., XII, 219 S., mehrere Abb. u. Tab., geb. 60s. Angewandte Chemie, 80(20), 856-856.
  24. Schaeffer, D. J., & Krylov, V. S. (2000)., Anti-HIV activity of extracts and compounds from algae and cyanobacteria., Ecotoxi. & Env. Safe, 45(3), 208-227.
  25. Damonte, E. B., Matulewicz, M. C., & Cerezo, A. S. (2004)., Sulfated seaweed polysaccharides as antiviral agents., Curr. Medi. Chem., 11(18), 2399-2419.
  26. Luescher-Mattli, M. (2003)., Algae, a possible source for new drugs in the treatment of HIV and other viral diseases., Current Medicinal Chemistry-Anti-Infective Agents, 2(3), 219-225.
  27. Jiao, G., Yu, G., Zhang, J., & Ewart, H. S. (2011)., Chemical structures and bioactivities of sulfated polysaccharides from marine algae., Marine Drugs, 9(2), 196-223.
  28. Ohta, Y., Lee, J. B., Hayashi, K., & Hayashi, T. (2009)., Isolation of sulfatedgalactan from Codium fragile and its antiviral effect., Biological and Pharmaceutical Bulletin, 32(5), 892-898.
  29. Venugopal, V. (2016)., Marine polysaccharides: Food applications., CRC Press.
  30. Aquino, R. S., Landeira-Fernandez, A. M., Valente, A. P., Andrade, L. R., & Mourao, P. A. (2005)., Occurrence of sulfated galactans in marine angiosperms: evolutionary implications., Glycobiology, 15(1), 11-20.
  31. Pierre, G., Delattre, C., Laroche, C., & Michaud, P. (2014). Galactans and its applications. Polysaccharides; Springer International Publishing: Cham, Switzerland., undefined, undefined
  32. De Oliveira, A. J. B., Cordeiro, L. M., Gonçalves, R. A. C., Ceole, L. F., Ueda-Nakamura, T., & Iacomini, M. (2013)., Structure and antiviral activity of arabino galactan with (1→6)-β-d-galactan core from Stevia rebaudiana leaves., Carbohydrate polymers, 94(1), 179-184.
  33. Chen, Y., Xie, M. Y., Nie, S. P., Li, C., & Wang, Y. X. (2008)., Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganodermaatrum., Food Chemistry, 107(1), 231-241.
  34. Mehta, Devanssh. (2020)., Possible plant based medicines and phytochemicals to be cure for deadly coronavirus covid 19., Food Chemistry, 310(1), 131-141.
  35. Press Information Bureau (2020)., Advisory for Corona virus Homoeopathy for Prevention of Corona virus Infections Unani Medicines useful in symptomatic management of Corona Virus infection., Accessed on: 23rd April 2020.
  36. Vellingiri, B., Jayaramayya, K., Iyer, M., Narayanasamy, A., Govindasamy, V., Giridharan, B., & Rajagopalan, K. (2020)., COVID-19: A promising cure for the global panic., Sci. Tot. Env., 45(8), 138-142.
  37. Phillipson, J. D., O'Neill, M. J., Wright, C. W., Bray, D. H., &Warhurst, D. C. (1987)., Plants as sources of antimalarial and amoebicidal compounds., Leeuwenberg, AJM (compilers). Medicinal and Poisonous Plants of the Tropics. Wagneningen, Centre for Agricultural Publishing and Documentation, 70-79.
  38. Ficetola, G. F., & Rubolini, D. (2020)., Climate affects global patterns of COVID-19 early outbreak dynamics., med Rxiv.
  39. Araujo, M. B., & Naimi, B. (2020)., Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate., med Rxiv., 41(2). 789-804
  40. Masson, A. (2020). Does Climate Have A Role In The Spread Of COVID-19?. post/does-climate-have-role-spread-covid-19. Accessed on: 23rd April 2020, undefined, undefined
  41. Fauci, A. S., Lane, H. C., & Redfield, R. R. (2020)., Covid-19-navigating the uncharted.,
  42. Yao, Y., Pan, J., Liu, Z., Meng, X., Wang, W., Kan, H., & Wang, W. (2020)., No Association of COVID-19 transmission with temperature or UV radiation in Chinese cities., European Respiratory Journal.