9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Nano sponge as versatile carrier systems - an updated review

Author Affiliations

  • 1School of Pharmacy, Anurag Group of Institutions, Hyderabad, Telangana - 501 301, India

Res. J. of Pharmaceutical Sci., Volume 8, Issue (1), Pages 20-28, June,30 (2019)

Abstract

Nano sponge is a recent advancement in the nanotechnology based drug delivery system. These are 3- dimensional scaffolds formed by extensive cross linking of polymers to form small nano size cavities capable of incorporating both hydrophilic and hydrophobic drugs. This inclusion complexation behaviour enhances the aqueous solubility of drugs with low aqueous solubility. The use of biodegradable polymers can release the drug in a controlled and predictable fashion to maintain constant drug levels. Further advancement in the nanosponge drug delivery is the use of peptide linkers to specifically target a receptor, usually in case of tumors. This will minimize the adverse effects caused mainly due to unspecific release of drug other than tumor cells. In this review, an attempt is made to summarize the methods of development, evaluation techniques, molecular environment and possible areas of applications and future of nanosponge drug delivery systems.

References

  1. Khamkar G., Moon R., Mali D., Kale A. and Likhe R. (2011)., Nanomedicine: as a novel application of nanotechnology., International Journal of Pharmaceutical Sciences and Research, 2(6), 1389.
  2. Mamidi H.K., Srimathkandala M.H., Sanka K., Babu M. and Ananthula V.B. (2015)., Development and evaluation of nasal insitu gel formulations of alprazolam using in vitro and invivo methods., international journal of pharmacy, 5(1), 278-288.
  3. Passarella R.J., Spratt D.E., van der Ende A.E., Phillips J.G., Wu H., Sathiyakumar V., Zhou L., Hallahan D.E., Harth E. and Diaz R. (2010)., Targeted nanoparticles that deliver a sustained, specific release of Paclitaxel to irradiated tumors., Cancer research, 70(11), 4550-4559. 0008-5472. CAN-0010-0339.
  4. Sharma R. and Pathak K. (2011)., Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation., Pharmaceutical development and technology, 16(4), 367-376.
  5. Trotta F. and Cavalli R. (2009)., Characterization and applications of new hyper-cross-linked cyclodextrins., Composite Interfaces, 16(1), 39-48.
  6. Lembo D. and Cavalli R. (2010)., Nanoparticulate delivery systems for antiviral drugs., Antiviral Chemistry and Chemotherapy, 21(2), 53-70.
  7. Cavalli R., Trotta F. and Tumiatti W. (2006)., Cyclodextrin-based nanosponges for drug delivery., Journal of inclusion phenomena and macrocyclic chemistry, 56(1-2), 209-213.
  8. Szejtli J. (1998)., Introduction and general overview of cyclodextrin chemistry., Chemical reviews, 98(5), 1743-1754.
  9. Loftsson T. and Brewster M.E. (1996)., Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization., Journal of pharmaceutical sciences, 85(10), 1017-1025.
  10. Li D. and Ma M. (1999)., Nanosponges: From inclusion chemistry to water purifying technology., Chemtech, 29(5), 31-37.
  11. Aritomi H., Yamasaki Y., Yamada K., Honda H. and Koishi M. (1996)., Development of Sustained-Release Formulation of Chlorpheniramine Maleate Using Powder-Coated Microsponge Prepared by Dry Impact Blending Method., 56(1), 49-56.
  12. Alongi J., Poskovic M., Frache A. and Trotta F. (2011)., Role of β-cyclodextrin nanosponges in polypropylene photooxidation., Carbohydrate Polymers, 86(1), 127-135.
  13. Bilensoy E. (2011)., Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications., ed.: John Wiley & Sons.
  14. Sapino S., Carlotti M., Cavalli R., Ugazio E., Berlier G., Gastaldi L. and Morel S. (2013)., Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges., Journal of inclusion phenomena and macrocyclic chemistry, 75(1-2), 69-76.
  15. Gharib N.N., Ashnagar A. and Hosseini F. (2007)., Study Of The Inclusion Complexation Of Piroxicam-B-Cyclodextrin And Determination Of The Stability Constant (K) By Dv-Visible Spectroscopy., Scientia Iranica, 14(4), 308-315.
  16. Swaminathan S., Vavia P., Trotta F. and Torne S. (2007)., Formulation of betacyclodextrin based nanosponges of itraconazole., Journal of inclusion phenomena and macrocyclic chemistry, 57(1-4), 89-94.
  17. Vyas A., Saraf S. and Saraf S. (2008)., Cyclodextrin based novel drug delivery systems., Journal of inclusion phenomena and macrocyclic chemistry, 62(1-2), 23-42.
  18. Blanchard J. and Proniuk S. (1999)., Some important considerations in the use of cyclodextrins., Pharmaceutical research, 16(12), 1796-1798.
  19. Rajewski R.A. and Stella V.J. (1996)., Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery., Journal of pharmaceutical sciences, 85(11), 1142-1169.
  20. Loftsson T. and Duchêne D. (2007)., Cyclodextrins and their pharmaceutical applications., International journal of pharmaceutics, 329(1-2), 1-11.
  21. Seiler M. (2006)., Hyperbranched polymers: Phase behavior and new applications in the field of chemical engineering., Fluid Phase Equilibria, 241(1-2), 155-174.
  22. Funasaki N., Ishikawa S. and Neya S. (2008)., Advances in physical chemistry and pharmaceutical applications of cyclodextrins., Pure and Applied Chemistry, 80(7), 1511-1524.
  23. Trotta F., Cavalli R., Tumiatti W., Zerbinati O., Roggero C. and Vallero R. (2008)., Ultrasound-assisted synthesis of cyclodextrin-based nanosponges., ed.: Google Patents.
  24. Rita L., Amit T. and Chandrashekhar G. (2011)., Current trends in β-cyclodextrin based drug delivery systems., Int J Res Ayurveda Pharm, 2, 1520-1526.
  25. Reddy M.N., Rehana T., Ramakrishna S., Chowdary K. and Diwan P.V. (2004)., β-Cyclodextrin complexes of celecoxib: molecular-modeling, characterization, and dissolution studies., Aaps Pharmsci, 6(1), 68-76.
  26. Mele A., Castiglione F., Malpezzi L., Ganazzoli F., Raffaini G., Trotta F., Rossi B., Fontana A. and Giunchi G. (2011)., HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges., Journal of inclusion phenomena and macrocyclic chemistry, 69(3-4), 403-409.
  27. Castiglione F., Crupi V., Majolino D., Mele A., Panzeri W., Rossi B., Trotta F. and Venuti V. (2013)., Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: an FTIR-ATR, Raman and solid-state NMR spectroscopic study., Journal of inclusion phenomena and macrocyclic chemistry, 75(3-4), 247-254.
  28. Raffaini G., Ganazzoli F., Mele A. and Castiglione F. (2013)., A molecular dynamics study of cyclodextrin nanosponge models., Journal of inclusion phenomena and macrocyclic chemistry, 75(3-4), 263-268.
  29. Gilardi G., DI Nardo G., Trotta F., Tumiatti V., Cavalli R., Ferruti P. and Ranucci E. (2009)., Cyclodextrin nanosponges as a carrier for biocatalysts, and in the delivery and release of enzymes, proteins, vaccines and antibodies.,
  30. Liang L., Liu D.P. and Liang C.C. (2002)., Optimizing the delivery systems of chimeric RNA. DNA oligonucleotides: Beyond general oligonucleotide transfer., European journal of biochemistry, 269(23), 5753-5758.
  31. Aynie I., Vauthier C., Chacun H., Fattal E. and Couvreur P. (1999)., Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides., Antisense and Nucleic Acid Drug Development, 9(3), 301-312.
  32. Di Nardo G., Roggero C., Campolongo S., Valetti F., Trotta F. and Gilardi G. (2009)., Catalytic properties of catechol 1, 2-dioxygenase from Acinetobacter radioresistens S13 immobilized on nanosponges., Dalton Transactions, (33), 6507-6512.
  33. Peng K., Hu J., Yan Y., Wu Y., Fang H., Xu Y., Lee S. and Zhu J. (2006)., Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles., Advanced Functional Materials, 16(3), 387-394.
  34. Chyan J., Hsu W. and Yeh J. (2009)., Broadband antireflective poly-Si nanosponge for thin film solar cells., Optics Express, 17(6), 4646-4651.
  35. Yang C-Y, Huang L-Y, Shen T-L and Yeh J.A. (2010)., Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces., Eur Cell Mater, 20, 415-430.
  36. A Ansari K., J Torne S., Vavia P.R., Trotta F. and Cavalli R. (2011)., Paclitaxel loaded nanosponges: in-vitro characterization and cytotoxicity study on MCF-7 cell line culture., Current drug delivery, 8(2), 194-202.
  37. Jordan V.C. (1993)., A current view of tamoxifen for the treatment and prevention of breast cancer., British journal of pharmacology, 110(2), 507-517.
  38. Minelli R., Cavalli R., Fantozzi R., Dianzani C., Pettazzoni P., Ellis L., Shen L. and Pili R. (2011)., Antitumor activity of nanosponge-encapsulated Camptotechin in human prostate tumors., ed.: AACR.
  39. Darandale S. and Vavia P. (2013)., Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization., Journal of inclusion phenomena and macrocyclic chemistry, 75(3-4), 315-322.
  40. Peeters J., Neeskens P., Tollenaere J.P., Van Remoortere P. and Brewster M.E. (2002)., Characterization of the interaction of 2‐hydroxypropyl‐β‐cyclodextrin with itraconazole at pH 2, 4, and 7., Journal of pharmaceutical sciences, 91(6), 1414-1422.
  41. Swaminathan S., Cavalli R., Trotta F., Ferruti P., Ranucci E., Gerges I., Manfredi A., Marinotto D. and Vavia P. (2010)., In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin., Journal of inclusion phenomena and macrocyclic chemistry, 68(1-2), 183-191.
  42. Amri A., Chaumeil J., Sfar S. and Charrueau C. (2012)., Administration of resveratrol: what formulation solutions to bioavailability limitations?., Journal of Controlled Release, 158(2), 182-193.
  43. Lu Z., Cheng B., Hu Y., Zhang Y. and Zou G. (2009)., Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity., Food chemistry, 113(1), 17-20.
  44. Lucas-Abellán C., Fortea I., López-Nicolás J.M. and Núñez-Delicado E. (2007)., Cyclodextrins as resveratrol carrier system., Food chemistry, 104(1), 39-44.
  45. Rao M., Bajaj A.N., Pardeshi A.A. and Aghav S.S. (2012)., Investigation of nanoporous colloidal carrier for solubility enhancement of Cefpodoxime proxetil., Journal of pharmacy research, 5(5), 2496-2499.
  46. Li D. and Ma M. (2000)., Nanosponges for water purification., Clean products and processes, 2(2), 112-116.
  47. Flagan R. and Ginley D.S. (2000)., Nanoscale Processes in the Environment., In Nanotechnology Research Directions: IWGN Workshop Report, Springer, Dordrecht, 205-218.
  48. Arkas M., Allabashi R., Tsiourvas D., Mattausch E-M. and Perfler R. (2006)., Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water., Environmental science & technology, 40(8), 2771-2777.
  49. Seglie L., Martina K., Devecchi M., Roggero C., Trotta F. and Scariot V. (2011)., The effects of 1-MCP in cyclodextrin-based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers., Postharvest biology and technology, 59(2), 200-205.
  50. Wong V.N., Fernando G., Wagner A.R., Zhang J., Kinsel G.R., Zauscher S. and Dyer D.J. (2009)., Separation of peptides with polyionic nanosponges for MALDI-MS analysis., Langmuir, 25(3), 1459-1465.
  51. Longo C., Gambara G., Espina V., Luchini A., Bishop B., Patanarut A.S., Petricoin III E.F., Beretti F., Ferrari B. and Garaci E. (2011)., A novel biomarker harvesting nanotechnology identifies Bak as a candidate melanoma biomarker in serum., Experimental dermatology, 20(1), 29-34.
  52. Cavalli R., Akhter A.K., Bisazza A., Giustetto P., Trotta F. and Vavia P. (2010)., Nanosponge formulations as oxygen delivery systems., International journal of pharmaceutics, 402(1-2), 254-257.