9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Numerical simulation of the thermal behavior of natural fiber composite gears: case of HDPE 40

Author Affiliations

  • 1Département de Génie Mécanique, Ecole Nationale Supérieure d’Ingénieurs, Université de Lomé, B.P. 1515 Lomé, Togo
  • 2Maître de Conférences, Département de Génie Mécanique, Ecole Nationale Supérieure d’Ingénieurs, Université de Lomé, B.P. 1515 Lomé, Togo
  • 3Professeur Titulaire, Directeur du Pôle R&D Francophone sur les Engrenages en Plastique – Ecole d’ingénierie, Université du Québec à Trois-Rivières, CP 500, Trois-Rivières, Québec, G9A 5H7, Canada
  • 4Professeur Titulaire, Département de Génie Mécanique, Ecole Nationale Supérieure d’Ingénieurs, Université de Lomé, B.P. 1515 Lomé, Togo

Res. J. Engineering Sci., Volume 8, Issue (3), Pages 20-32, September,26 (2019)

Abstract

This study is the continuation of the work to adapt the wood fiber composite materials to the gears, to manufacture a new generation of gears and to predict the thermomechanical behavior of these gears. In this part we are interested in the thermal study. Simulation studies of thermal behavior led to the knowledge of the evolution of the equilibrium temperature and the instantaneous temperature on the tooth profile as a function of S/pn, the normalized position of the contact point, by varying the wear rate. The distribution of the local instantaneous temperature Tson the Hertz contact width as a function of the position of the contact point along this width has also been studied. The study of the thermal behavior revealed that the instantaneous temperature is always higher than the equilibrium temperature on the profile of the tooth, except at the primitive point where the two temperatures are confused. Also, there is no significant difference between the instantaneous pinion and wheel temperatures and in addition the applied wear rates have no significant influence on the temperatures.

References

  1. Migneault S., Koubaa A., Erchiqui F., Chaala A., Englund K. and Wolcott M.P. (2011)., Application of micromechanical models to tensile properties of wood–plastic composites., Wood Science and Technology, 45(3), 521-532.
  2. Lee S.Y., Yang H.S., Kim H.J., Jeong C.S., Lim B.S. and Lee J.N. (2004)., Creep behavior and manufacturing parameters of wood flour filled polypropylene composites., Composite Structures, 65(3-4), 459-469.
  3. Mendez J.A., Vilaseca F., Pelach M.A., Lopez J.P., Barbera L., Turon X. and Mutje P. (2007)., Evaluation of the reinforcing effect of ground wood pulp in the preparation of polypropylene‐based composites coupled with maleic anhydride grafted polypropylene., Journal of Applied Polymer Science, 105(6), 3588-3596.
  4. Aggarwal P.K., Chauhan S., Raghu N., Karmarkar S. and Shashidhar G.M. (2013)., Mechanical properties of bio-fibers-reinforced high-density polyethylene composites: effect of coupling agents and bio-fillers., Journal of Reinforced Plastics and Composites, 32(22), 1722-1732.
  5. Bravo A., Koffi D., Toubal L. and Erchiqui F. (2015)., Life and damage mode modeling applied to plastic gears., Engineering Failure Analysis, 58, 113-133.
  6. Strickle E. and Hachmann H. (1968)., Design of Nylon Gears., Proceedings of the Society of plastics Engineers Annual Technology Conference, 26, 512-519.
  7. KOFFI D. (1987)., Study of the thermal behavior of the straight cylindrical plastic gear., PhD Thesis. Department of Mechanical Engineering, Polytechnic School of Montreal, Canada.
  8. Mao K., Li W., Hooke C.J. and Walton D. (2010)., Polymer gear surface thermal wear and its performance prediction., Tribology International, 43(1-2), 433-439.
  9. Koffi D. and Yelle H. (1991)., Simplified model of analysis and computer simulation of the thermal behavior of straight plastic cylindrical gears. II: Results and simulation., International Journal of CAD / CAM and Computer Graphics, 6(3-4), 227-261.
  10. Sell D.J. (1992)., Finite element modeling spur and helical gears in contact., SAE transactions, 101(2), 697-703.
  11. Akozan M. (1982)., Experimental study of the convective heat transfer coefficient for thermoplastic straight cylyndrical gears., Montreal Polytechnic School Montreal.
  12. Mijiyawa F. (2017)., Formulation, characterization, modeling and prediction of the thermomechanical behavior of plastic parts and composites of wood fibers: Application to gears., PhD Thesis, University of Québec à Trois Rivières, Canada.
  13. Tobe T. and Kato M. (1974)., A Study on Flash Temperatures., Trans. ASME, J. Eng. for Ind, 96, 78-84.