6th International Young Scientist Congress (IYSC-2020) and Workshop on Intellectual Property Rights. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Signal analysis for ground based LiDAR

Author Affiliations

  • 1Aryabhatta Research Institute of Observational Sciences (ARIES), Manora peak, Nainital, Uttarakhand, India and Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
  • 2Aryabhatta Research Institute of Observational Sciences (ARIES), Manora peak, Nainital, Uttarakhand, India
  • 3Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

Res. J. Engineering Sci., Volume 8, Issue (2), Pages 17-22, May,26 (2019)


Light Detection and Ranging (LiDAR) is a popular and versatile tool used studying the atmospheric vertical structure and dynamics. The variations in the atmospheric constituents such as aerosols, dust, clouds, water vapor and temperature can be studied using this tool. It is the optical counterpart of the well known Radio Detection and Ranging (RaDAR). This paper presents the fundamental approaches analyzing the LiDAR signals. The language used for the signal analysis is MATLAB and the data acquisition board is of ORTEC make.


  1. Tsang L., Kong J.A. and Shin R.T. (1985)., Theory of Microwave Remote Sensing., Wiley-Interscience, New York, 1-632. ISBN: 978-04-71888-60-4.
  2. Janssen M.A. (1993)., Atmospheric Remote Sensing by Microwave Radiometry., John Wiley and Sons Ltd., New York, 1-592. ISBN: 978-04-71628-91-0.
  3. Welton E.J., Voss K.J., Gordon H.R., Maring H., Smirnov A., Holben B., Schmid B., Livingston J.M., Russell P.B., Durkee P.A., Formenti P., Andrea M.O. and Dobovik O. (2000)., Ground-based lidar measurements of aerosols during ACE-2: instrument description, results, and comparisons with other ground based and airborne measurements., Tellus, 52B(2), 636-651.
  4. Winker D.M., Pelon J. and McCormick M.P. (2003)., The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds., Proc. SPIE Int. Soc. Opt. Eng., 4893, 1-11. doi: 10.1117/12.466539.
  5. Measures R.M. (1984)., Laser Remote Sensing: Fundamental and Applications., Wiley-Interscience, New York, 1-521. ISBN: 978-08-94646-19-5.
  6. Solanki R. and Singh N. (2014)., LiDAR observations of the vertical distribution of aerosols in free troposphere: Comparison with CALIPSO level-2 data over the central Himalayas., Atmos. Environ., 99, 227-238. doi: https://doi.org/10.1016/j.atmosenv.2014.09.083.
  7. Kumar A., Singh N., Anshumali and Solanki R. (2018)., Evaluation and utilization of MODIS and CALIPSO aerosol retrievals over a complex terrain in Himalaya., Remote Sens. Environ., 206, 139-155. doi: http://dx.doi.org/10.1016/j.rse.2017.12.019.
  8. Bangia T., Omar A., Sagar R., Kumar A., Bhattacharjee S., Reddy A. and Kumar P. (2011)., Study of atmospheric aerosols over the central Himalayan region using a newly developed Mie light detection and ranging system: preliminary results., Journal of Applied Remote Sensing, 5(1), 053521.
  9. Jayaraman A., Acharya Y.B., Subbaraya B.H. and Chandra H. (1995)., Nd:YAG backscatter lidar at Ahmedabad (23° N, 72.5° E) for tropical middle atmospheric studies., Appl. Optics, 34(30), 6937-6940.
  10. Spinhirne J.D. (1993)., Micro pulse lidar., IEEE Trans. Geosci. Remote Sens., 31, 48-55.