International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Physico-mechanical properties of Benin lateritic soils and alterites and their use to make stabilized agglomerates

Author Affiliations

  • 1University of Abomey-Calavi (UAC), Benin
  • 2National University of Sciences, Technologies, Engineering and Mathematics (UNSTIM), Benin
  • 3National University of Sciences, Technologies, Engineering and Mathematics (UNSTIM), Benin
  • 4University of Abomey-Calavi (UAC), Benin
  • 5University of Abomey-Calavi (UAC), Benin
  • 6University of Abomey-Calavi (UAC), Benin

Res. J. Engineering Sci., Volume 7, Issue (10), Pages 18-28, November,26 (2018)


Faced to the need to promote agglomerates in stabilized earth, this study was initiated in order to overcome the lack of technical studies on the raw materials used in construction and more specifically on lateritic soils and alterites available in Benin. The funding of this research was provided by the West African Economic and Monetary Union (WAEMU) within the framework of its Program of Support to Higher Education (PSHE-WAEMU). As granulometry, plasticity as well as compacting conditions of soils systemically influence the behavior of agglomerates, a determination of the physico-mechanical properties was made through granulometric tests, the determination of the parameters of plasticity and the Proctor compaction references. This study highlights that lateritic soils and alterites, although geologically different, are, from the geotechnical point of view, all silty or loamy soils with varying plasticity, and containing sometimes a small proportion of gravel; lateritic soils are sandier than alterites. The characteristics of the lateritic soils are more interesting than those of alterites for the production of landcretes. According to the ARS 680 standard, Zagnanado, Zakpota, Ketou and Houeyogbe lateritic soils and the alterite from Tanguieta can be accepted as raw materials for landcretes whereas, according to Hydraform recommendations, only the lateritic soils from Zagnanado is usable in the state to make landcretes with a targeted resistance of 4MPa after 28 days with an incorporation of 4 to 7% of cement. Other soils should be improved by adding sand or lime, under conditions to be specified. In the case of the use of the CEN standardized sand conforming to EN 196-1, the proportions of the base material range from 59.73% to 64.90% for lateritic soils and from 56.25% to 97.83% for alterites.


  1. Igué A.M., Floquet A. and Stahr K. (2005)., Land use/ cover change and farming systems in central Benin., Bulletin de la Recherche Agronomique, 50, 23-37.
  2. Igué A.M., Houndagba C.J., Gaiser T. and Stahr K. (2012)., Accuracy of the Land Use/Cover classification in the Oueme Basin of Benin (West Africa)., International Journal of Agri Science, 2(2), 174-184.
  3. Houessou A. and Lang J. (1978)., Contribution à l’étude du « continental terminal » dans le Bénin méridional., Sci. Géol., 31(4), 137-149.
  4. Sorgho B., Zerbo L., Keita I., Dembele C., Plea M., Sol V., Gomina M. and Blanchart P. (2014)., Strength and creep behavior of geomaterials for building with tannin addition., Materials and Structures, 47(6), 937-946. http:// doi 10.1617/s11527-013-0104-7
  5. Samah El-Hadj Ouro Djobo (2005)., Construire en matériaux de terre: tradition et modernité., Centre de Construction et de Logement (CCL), Cacaveli, Lomé, Togo.
  6. Agrement South Africa (2010)., Agrement Certificate 96/237., Hydraform Building System.
  7. ARS 680 (1996)., Blocs de terre comprimée, renseignant sur les bonnes pratiques pour la préparation des mortiers de terre., ARS.
  8. Slansky Maurice (1962)., Contribution à l’étude géologique du bassin sédimentaire côtier du Dahomey et du Togo., Mémoires du Bureau de Recherches Géologiques et Minières.
  9. OBEMINES (1984)., Carte géologique à 1/200.000 feuille Djougou-Parakou- Nikki et sa notice explicative., Office Béninois des Mines.
  10. OBEMINES (1989)., Carte géologique à 1/200.000 feuilles Malanville., Kandi, Porga, Karimama et leur notice explicative : Mémoire n°2. Office Béninois des Mines.
  11. OBEMINES (1989)., Carte géologique à 1/200.000, feuilles Lokossa- Porto-Novo., Abomey, Zagnanado, Pira-Savè et leur notice explicative : Mémoire n°3. Office Béninois des Mines.
  12. OBEMINES (1995)., Carte géologique à 1/200.000, feuilles Sansanné-Mango., Natitingou, Bembéréké, Dunkassa et leurs notices explicatives : Mémoires n°4 et 5. Office Béninois des Mines.
  13. AFNOR N. (1995)., Sols: reconnaissance et essais., Détermination de la teneur en eau pondérale des matériaux - Méthode par étuvage, NF P 94-050.
  14. AFNOR N. (1996)., Sols: Reconnaissance et essais., Analyse granulométrique. Méthode par tamisage à sec après lavage, XP P 94-056.
  15. AFNOR N. (1992)., Sols: reconnaissance et essais., Analyse granulométrique des sols - Méthode par sédimentation, NF P 94-057.
  16. AFNOR N. (1993)., Sols: reconnaissance et essais., Détermination des limites d
  17. AFNOR (1999)., Sols: reconnaissance et essais., Détermination des références de compactage d
  18. AFNOR (1992)., Classification des matériaux utilisables dans la construction des remblais et des couches de forme d, Exécution des terrassements, NF P 11-300.
  19. LCPC-SETRA (2000)., Guide des Terrassements Routiers, Réalisation des remblais et des couches de forme (GTR)., Fascicules I et II.
  20. Magnan J.P. (1997)., Description, identification et classification des sols., Techniques de l’Ingénieur.
  21. Ramamurthy T.N. and Sitharam T.G. (2010)., Geotechnical Engineering (Soil mechanics)., 3rd Edition. S. Chand and Company Ltd, 7361. ISBN : 81-219-2457-X.
  22. Beinish H. (1999)., Granulat reconstitué dont la courbe entre dans un fuseau donné., CERIB. Fiche 17.
  23. AFNOR (2016)., Méthodes d, NF EN 196-1.