International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Minimization of discretization errors and boundary mismatch problems in numerical analyses through h-adaptive mesh generation and multi-edge concept

Author Affiliations

  • 1Departement of Electrical Engineering, Ecole Nationale Supérieured’Ingénieurs (ENSI), Université de LOME, Togo
  • 2Departement of Electrical Engineering, Ecole Nationale Supérieured’Ingénieurs (ENSI), Université de LOME, Togo
  • 3Centre de la Construction et du Logement (CCL), Cacavelli, Lome, Togo
  • 4Departement of Mathematics, Faculté des Sciences (FDS), Université de LOME, Togo
  • 5Lehrstuhl Allgemeine Elektrotechnik und Numerische Feldberechung, TU Cottbus, Postfach 101344, D-03013 Cottbus, Germany

Res. J. Engineering Sci., Volume 7, Issue (1), Pages 1-10, January,26 (2018)


In any analysis of practical problem using Finite Element Method (FEM), discretization errors are intentionally introduced which most of the time lead to boundary mismatch problems in curved areas where boundary condition of a third kind is applied. In this paper linear finite elements approach with a Multi-Edge concept and h-Adaptive mesh generation have been proposed to minimize the numerical errors.


  1. David Burnnett (1987)., Finite Element Analysis from Concept to Applications., Addison-WesleyPub. Co., US, 1-844. ISBN: 9780201108064
  2. Jin J.M. (2014)., The Finite Element Method in Electromagnetics., Wiley-IEEE Press, US, 1-876. ISBN: 978-1-118-57136-1
  3. Binns K.J., Trowbridge C.W. and Lawrenson P.J. (1992)., The analytical and numerical solution of electric and magnetic fields., Wiley-Blackwell, US, 1-486. ISBN-10: 0471924601, ISBN-13: 978-0471924609
  4. Biddlecombe C., Simkin J. and Trowbridge C. (1986)., Error analysis in finite element models of electromagnetic fields., IEEE Transactions on Magnetics, 22(5), 811-813.
  5. Tanner D.R. and Peterson A.F. (1989)., Vector expansion functions for the numerical solution of Maxwell, Microwave and Optical Technology Letters, 2(9), 331-334.
  6. Yan S. and Jin J.M. (2015)., Theoretical formulation of a time-domain finite element method for nonlinear magnetic problems in three dimensions., Progress In Electromagnetics Research, 153, 33-55.
  7. Jiao D., Ergin A.A., Shanker B., Michielssen E. and Jin J.M. (2002)., A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis., IEEE Transactions on Antennas and Propagation, 50(9), 1192-1202.
  8. Yan S., Lin C.P., Arslanbekov R.R., Kolobov V.I. and Jin J.M. (2017)., A Discontinuous Galerkin Time-Domain Method With Dynamically Adaptive Cartesian Mesh for Computational Electromagnetics., IEEE Transactions on Antennas and Propagation, 65(6), 3122-3133. DOI: 10.1109/TAP.2017.2689066.
  9. Kost A. and Janicke L. (1992)., Universal generation of an initial mesh for adaptive 3-D finite element method., IEEE transactions on magnetics, 28(2), 1735-1738.
  10. Watson D.F. (1981)., Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes., The computer journal, 24(2), 167-172.
  11. Kpogli K. and Kost A. (2003)., Local error estimation and strategic mesh generation for time-dependent problems in electromagnetics coupled with heat conduction., IEEE transactions on magnetics, 39(3), 1701-1704.
  12. Silvester P.P. and Ferrari R.L. (1983)., Finite Elements for Electrical Engineers., Cambridge University Press,United Kingdom, 1-499. ISBN 10 : 0-521-44953-7
  13. Webb J.P. and Forghani B. (1995)., T-omega method using hierarchal edge elements., IEE Proceedings-Science, Measurement and Technology, 142(2), 133-141.
  14. Turner L.R., Davey K., Ida N., Rodger D., Kameari A., Bossavit A. and Emson C.R.I. (1988)., Workshops and problems for benchmarking eddy current codes (No. ANL/FPP/TM-224)., Argonne National Lab., IL (USA).
  15. Komla Kpogli, Sibiri Wourè-Nadiri Bayor, Ayité Senah Akoda Ajavon, Kokou Tcharie and Arnulf Kost (2017)., Optimal Meshing of Structured Boundary Domains in Numerical Analyses., American Journal of Engineering and Applied Sciences, 10(4), 835-848. Doi: 10.3844/ajeassp.2017.835.846.