5th International Virtual Conference (IVC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Evaluation of wind potential in the sahelian area: case of three sites in Burkina Faso

Author Affiliations

  • 1Equipe de Recherche en Sciences de l’Ingénieur (ERSI), Department of Electrical Engineering, Institut Universitaire de Technologie, University Nazi BONI of Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso 01, BURKINA FASO
  • 2Equipe de Recherche en Sciences de l’Ingénieur (ERSI), Department of Electrical Engineering, Ecole Nationale Supérieure d’Ingénieurs (ENSI), University of Lomé, 01 BP 1515 Lomé 01, Lomé TOGO
  • 3Equipe de Recherche en Sciences de l’Ingénieur (ERSI), Department of Electrical Engineering, Ecole Nationale Supérieure d’Ingénieurs (ENSI), University of Lomé, 01 BP 1515 Lomé 01, Lomé TOGO
  • 4Equipe de Recherche en Sciences de l’Ingénieur (ERSI), Department of Electrical Engineering, Ecole Nationale Supérieure d’Ingénieurs (ENSI), University of Lomé, 01 BP 1515 Lomé 01, Lomé TOGO
  • 5Equipe de Recherche en Sciences de l’Ingénieur (ERSI), Department of Electrical Engineering, Ecole Nationale Supérieure d’Ingénieurs (ENSI), University of Lomé, 01 BP 1515 Lomé 01, Lomé TOGO

Res. J. Engineering Sci., Volume 6, Issue (11), Pages 43-53, December,26 (2017)

Abstract

This article proposes the evaluation of wind potential at different altitudes. A good wind speed data analysis with an accurate wind energy potential evaluation are very important factors for suitable development of wind power use or application at a given zone or region. This paper presents wind speed distribution for three (3) weather stations in Burkina Faso (Dori, Ouagadougou et Ouahigouya), to select the two-parameter Weibull method that provide accurate and efficient evaluation of energy output for wind energy devices. The shape parameter k and the scale parameter c are calculate based on measured three-hourly mean wind speed data in times-series from 2004 to 2013, collected for three (3) weather stations in Burkina Faso. Three numerical methods, namely Graphical Method (GM), Justus Method (JM) and Power Density Method (PDM) are examined to calculate the Weibull parameters. To analyze the efficiency of the methods and to ascertain how closely the measured data follow the Weibull methods, goodness of fit tests were performed using the correlation coefficient (R2) and Root Mean Square Error (RMSE). The obtained results revealed that the power density method is the most accurate and efficient method for calculating the value of the shape parameter k and the scale parameter c. The annual variation in the recoverable wind power density varies between 42.11 W/m2 in Ouahigouya and 12.78 W/m2 in Dori for the maximum and minimum value and 36.41 W/m2 in Ouagadougou. The results show that the energy potential of the Dori site is not suitable for electrical production. However, the average speed of Ouagadougou and Ouahigouya sites shows that electricity can be generated from wind power at these sites, but from a height of 80 meters.

References

  1. Mostafaeipour A., Jadidi M., Mohammadi K. and Sedaghat A. (2014)., An Analysis of Wind Energy Potential and Economic Evaluation in Zahedan, Iran., Renewable and Sustainable Energy Reviews, 30, 641-650.
  2. Houekpoheha M.A., Kounouhewa B., Tokpohozin B.N. and Awanou N. (2014)., Estimation de la puissance énergétique éolienne à partir de la distribution de Weibull sur la côte béninoise à Cotonou dans le Golfe de Guinée., Revue des Energies Renouvelables, 17(3), 489-495.
  3. Abdraman M., Tahir A., Lissouck D., Kazet M. and Mouangue R. (2016)., Wind Resource Assessment in the City of N, International Journal of Renewable Energy Research (IJRER), 6(3), 1022-1036.
  4. Ministère des mines et de l’énergie du Burkina Faso (2013)., Politique Sectorielle de l’Energie 2014 – 2025, Standards and Reports.,
  5. Fagbenle R.O., Katende J., Ajayi O.O. and Okeniyi J.O. (2011)., Assessment of wind energy potential of two sites in North-East, Nigeria., Renewable energy, 36(4), 1277-1283.
  6. Fyrippis I., Axaopoulos P.J. and Panayiotou G. (2010)., Wind energy potential assessment in Naxos Island, Greece., Applied Energy, 87(2), 577-586.
  7. Landry M., Ouedraogo Y., Gagnon Y. and Ouedraogo A. (2011)., Atlas éolien du Burkina Faso., rapport de l’Université de Moncton, Canada et UFR-SEA, Université de Ouagadougou, Burkina Faso.
  8. Salami A.A., Ajavon A.S.A., Kodjo M.K. and Bedja K. (2006)., Etude de la variabilité mensuelle du potentiel éolien sur le site de Lomé: contribution à un choix optimal des aérogénérateurs pour ce site., J. Rech. Sci. Univ. Lomé (TOGO).
  9. Tar K. (2008)., Some statistical characteristics of monthly average wind speed at various heights., Renewable and Sustainable Energy Reviews, 12(6), 1712-1724.
  10. Al Zohbi G., Hendrick P. and Bouillard P. (2014)., Evaluation du potentiel d’énergie éolienne au Liban., Revue des Energies Renouvelables, 17(1), 83-96.
  11. Salami A.A., Tiem S., Lishou C. and Bédja K. (2007)., La logique floue pour la prediction de la moyenne horaire de la vitesse du vent sur le site de Lomé., Journal des Sciences Pour l
  12. Mouangue M.R., Kazet M.Y., Kuitche A. and Ndjaka J.M. (2014)., Influence of the Determination Methods of k and c Parameters on the Ability of Weibull Distribution to Suitably Estimate wind Potential and Electric Energy., International Journal of Renewable Energy Development, 3(2), 145-154.
  13. Seguro J.V. and Lambert T.W. (2000)., Modern Estimation of the Parameters of the Weibull Wind Speed Distribution for Wind Energy Analysis., Journal of Wind Energy Engineering and Industrial Aerodynamics, 85(1), 75-84.
  14. Vishnupriyan J. and Manoharan P.S. (2017)., Demand side Management Approach to Rural Electrification of Different Climate Zones in Indian State of Tamil Nadu., Energy, Elsevier, 138, 799-815.
  15. Direction Générale de la Météorologie du Burkina Faso (2015)., Données climatologiques de stations météorologiques (2004–2013)., Standards and Reports, Ouagadougou.
  16. Akpinar S. and Akpinar E.K. (2007)., Wind energy analysis based on maximum entropy principle (MEP)-type distribution function., Energy Conversion and Management, 48(4), 1140-1149.
  17. Safari B. (2011)., Modeling wind speed and wind power distributions in Rwanda., Renewable and Sustainable Energy Reviews, 15(2), 925-935.
  18. Ramírez P. and Carta J.A. (2005)., Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study., Energy Conversion and Management, 46(15), 2419-2438.
  19. Mathew S. and Philip G.S. (2011)., Advances in wind energy and conversion technology., 20, Berlin: Springer, 74-80.
  20. Kidmo D.K., Danwe R., Doka S.Y. and Djongyang N. (2015)., Statistical analysis of wind speed distribution based on six Weibull Methods for wind power evaluation in Garoua, Cameroon., Revue des Energies Renouvelables, 18(1), 105-125.
  21. Mohammadi K., Alavi O., Mostafaeipour A., Goudarzi N. and Jalilvand M. (2016)., Assessing different parameters estimation methods of Weibull distribution to compute wind power density., Energy Conversion and Management, 108, 322-335.
  22. Kasbadji-Merzouk N., Merzouk M. and Benyoucef B. (2007)., Extrapolation verticale des paramètres de Weibull pour l’estimation du potentiel récupérable., Revue des Energies Renouvelables, 1CRESD-07, Tlemcen, 193-198.
  23. Tieleman H.W. (2003)., Roughness Estimation for Wind-Load Simulation Experiments., Journal of Wind Energy Engineering and Industrial Aerodynamics, 91(9), 1163-1173.