International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Valorization of the Borassus Aethiopum wood behavior in tensile and bending

Author Affiliations

  • 1Department of Mechanical Engineering, University Lome, Lome, Togo
  • 2Department of Mechanical Engineering, University Lome, Lome, Togo
  • 3Department of civil Engineering, University Lome, Lome, Togo

Res. J. Engineering Sci., Volume 6, Issue (11), Pages 20-29, December,26 (2017)


Aethiopum is a species of Borassus that is often seen in tropical Africa and has long been used for the construction of beams and poles. The buildings were never bent or damaged as a result of a termite attack. But as it became difficult to use this wood, it was abandoned. This study on wood observes closely its mechanical behavior in flexion and traction. Three-points bending and tensile tries were carried out in the longitudinal direction of the fibers on the samples. Borassus is basically made of intertwined fibers, making it a very elastic material. The packed structure of the fibers gives this wood a good resistance to bending and makes it strong in slab. The high compressive strength makes it possible to use wood as a post. Since wood is a living material, this work presents the range of the Borassus Young\'s modulus determined by experiments. The slope method used compares the behavior of the material according to two different incentives. Values were established by an Excel spreadsheet. The Young\'s modulus in tension is 16571 ± 1832 MPa, the modulus of elasticity in flexion is 23565.25 ± 3724 MPa. This article aims to contribute to the valorization of a traditional famous wood because of its natural virtues. In view of these results, we can say that Borassus is resistant to bending bite in traction.


  1. Asibe A.O., Kwasi F.M. and Albert D.N. (2013)., Assessment of the effects of density on the mechanical properties variations of Borassus aethiopum., Chholars Research Library, 5(6), 6-19.
  2. Atcholi E.K., Sanya E., Vianou A., Amey B.K. and Samah O.D. (2013)., Caractérisation du Rônier (Borassus Aethiopum) Cocker., ТЕХНИЧЕСКИЕ НАУКИ, 3(23), 140-147.
  3. Chevalier Augustin (1930)., Le borassus aethiopum de l’Afrique Occidentale et son utilisation., Revue Scientifique, 10(108), 649-655.
  4. Baes J.M. and Lagoutte C. (2004)., Rapport d, 1-11.
  5. Balakrishna A., Rao D.N. and Rakesh A.S. (2013)., Characterization and modeling of process parameters on tensile strength of short and randomly oriented Borassus Flabellifer (Asian Palmyra) fiber reinforced composite., Composites Part B: Engineering, 55, 479-485.
  6. Boopathi L., Sampath P.S. and Mylsamy K. (2012)., Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber., Composites Part B: Engineering, 43(8), 3044-3052.
  7. Doko Kouandété V. (2013)., Étude comparative de la formulation, de la caractérisation physique et mécanique de deux composites à matrice cimentaire renforcée par des biomasses végétales : cas des fibres de rônier et des balles de riz., Revue du 21ème Congrès Français de Mécanique, AFM, Maison de La Mécanique, 1-7.
  8. Gbaguidi V.S., Gbaguidi Aisse G.L., Gibidaye M., Adjovi E., Sinsin B.A. and Amadji A.T. (2010)., Détermination expérimentale des principales caractéristiques physiques et mecaniques du bois du rônier (Borassus Aethiopum Mart.) d’origine béninoise., Journal Recherche Scientifique Universitaire de Lomé (Togo), 12(2), 1-9.
  9. Giffard P.L. (1967)., Le palmier ronier., Bois et Forêts Des Tropiques, 116, 3-13.
  10. Gérard J., Kouassi A.E., Daigremont C., Détienne P., Fouquet D. and Vernay M. (1998)., Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains., Cirad, Série FORAFRI. Montpellier - France.
  11. Maheswari C.U., Reddy K.O., Muzenda E., Guduri B.R. and Rajulu A.V. (2012)., Extraction and characterization of cellulose microfibrils from agricultural residue e Cocos nucifera L., Biomass and Bioenergy, 46, 555-563.
  12. Reddy K.O., Maheswari C.U., Shukla M., Song J.I. and Rajulu A.V. (2013)., Composites : Part B Tensile and structural characterization of alkali treated Borassus fruit fine fibers., Composites Part B, 44(1), 433-438.
  13. Samah O.D., Amey K.B. and Neglo K. (2015)., Determination of mechanical characteristics and reaction to fire of “ RÔNIER ” ( Borassus aethiopum Mart .) of Togo., African Journal of Environnemental Science and Technology, 9(2), 80-85. AJEST2014.1767
  14. Shanmugam D. and Thiruchitrambalam M. (2013)., Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber / jute fiber reinforced hybrid polyester composites., Materials and Design, 50, 533-542.
  15. Srinivasababu N., Kumar J.S. and Kumar K.V. (2014)., Manufacturing and Characterization of Long Palmyra Palm / Borassus Flabellifer Petiole Fibre Reinforced Polyester Composites., Procedia Technology, 14, 252-259.
  16. Sudhakara P., Jagadeesh D., Wang Y., Prasad C.V., Devi A.P.K., Balakrishnan G. and Song J.I. (2013)., Fabrication of Borassus fruit lignocellulose fiber / PP composites and comparison with jute , sisal and coir fibers., Carbohydrate Polymers, 98(1), 1002-1010.
  17. Yameogo/Coulibaly G. (2007)., Les modes de gestion de Borassus Aethiopum Mart. dans la province du Koulpelogo., Mémoire de Master, Université de Bobo Dioulasso, Burkina Faso.