International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Study on equilibrium conditions of methane gas hydrates

Author Affiliations

  • 1Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
  • 2Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
  • 3Gas Hydrate Research and Technology Centre, ONGC, Panvel, Mumbai, India

Int. Res. J. Environment Sci., Volume 9, Issue (4), Pages 80-90, October,22 (2020)

Abstract

Methanegas hydrates are nonstoichiometric crystalline form of solids which are form by the amalgamation of molecules of methane gas with the molecules of water at low temperature and high pressure. For oil, gas, chemical and other industries, the formation of MGHs has been a problem for many years because hydrate may block the pipelines or valves. Hydrate formation in a pipeline may also cause a blowout in the drilling operations. The knowledge of the equilibrium conditions of gas hydrate is obligatory for the economical and safe plan of operations in oil, gas, chemical industries where hydrate nucleation/formation occurred. It becomes important to measure the incipient conditions of hydrate formations for the system containing different inhibitors, promoters, salts, porous materials. The conditions of stability for MGHs in pure and seawater will be different because of the existence of ions and salts in seawater. The stability pressure of MGHs in seawater is higher than pure water, but the temperature for the gas hydrate can be lower in seawater than pure water. The stability conditions of MGHs can be disturbed by the simple addition of salts, electrolytes in the host sediments or water of MGHs. The co-existence of all dissolved ions in seawater depresses the dissociation temperature for the stability of methane hydrate ranges between pressures of 2.75-10 MPa. For seawater with a salinity of 33.5%, the observed offset in dissociation temperature was 1.1&

References

  1. Stern, L. A., Circone, S., Kirby, S. H., & Durham, W. B. (2003)., Temperature, pressure, and compositional effects on anomalous or self preservation of gas hydrates., Canadian Journal of Physics, 81(1-2), 271-283. https://doi.org/10.1139/p03-018.
  2. Jeffrey, G. A., & McMullan, R. K. (1967)., The Clathrate Hydrates., Progress in Inorganic Chemistry, 8, 43-190. https://doi.org/doi:10.1002/9780470166093.ch2.
  3. Ripmeester, J. A., Ratcliffe, C. I., Klug, D. D., & Tse, J. S. (1994)., Molecular perspectives on structure and dynamics in clathrate hydrates., Annals of the New York Academy of Sciences, 715(1), 161-176. https://doi.org/10.1111/j.1749-6632.1994.tb38832.x.
  4. Shen, P., Li, G., Li, J. L. X., & Zhang, J. (2019)., Gas Permeability and Production Potential of Marine Hydrate Deposits in South China Sea., Energies, 12, 4117. https://doi.org/10.3390/en12214117.
  5. Katz, D. . (1971)., Depths to Which Frozen Gas Fields (Gas Hydrate) may be expected., Journal of Petroleum Technology, 419-423. https://doi.org/10.2118/3061-PA.
  6. Kvenvolden, Keith A. (1988)., Methane hydrate - A major reservoir of carbon in the shallow geosphere?, Chemical Geology, 71(1-3), 41-51. https://doi.org/10.1016/0009-2541(88)90104-0
  7. B.H. Wu, (1994)., Measurement and prediction of gas hydrate equilibrium conditions in the presence of inhibitors, in: Chemical and Biomedical Engineering, The University of British Columbia.,
  8. Kvenvolden, Keith A. (1993)., Gas hydrates-geological perspective and global change., Reviews of Geophysics, 31(2), 173-187. https://doi.org/10.1029/93RG00268
  9. Cha, M., Shin, K., Kim, J., Chang, D., Seo, Y., Lee, H., & Kang, S. P. (2013)., Thermodynamic and kinetic hydrate inhibition performance of aqueous ethylene glycol solutions for natural gas., Chemical Engineering Science, 99, 184-190. https://doi.org/10.1016/j.ces.2013.05.060
  10. E. D., & Koh, C. A. (2008)., Clathrate hydrates of natural gases third edition., Chemical Industries-New York Then Boca Raton-Marcel Dekker Then Crc Press-, 119.
  11. Kim, J.-T., Kim, A.-R., Cho, G.-C., Kang, C.-W., & Lee, J. Y. (2019)., The Effects of Coupling Stiffness and Slippage of Interface Between the Wellbore and Unconsolidated Sediment on the Stability Analysis of the Wellbore Under Gas Hydrate Production., Energies, 12, 4177. https://doi.org/10.3390/en12214177.
  12. Yang, D. H., & Xu, W. Y. (2007)., Effects of salinity on methane gas hydrate system., Science in China, Series D: Earth Sciences, 50(11), 1733-1745. https://doi.org/10.1111/ mpp.12146
  13. Zhang, Y., & Xu, Z. (2003)., Kinetics of convective crystal dissolution and melting, with applications to methane hydrate dissolution and dissociation in seawater., Earth and Planetary Science Letters, 213(1-2), 133-148. https://doi.org/10.1016/S0012-821X(03)00297-8.
  14. Tishchenko, P., Hensen, C., Wallmann, K., & Wong, C. S. (2005)., Calculation of the stability and solubility of methane hydrate in seawater., Chemical Geology, 219(1-4), 37-52. https://doi.org/10.1016/j.chemgeo.2005.02.008
  15. Yamano, M., Uyeda, S., Aoki, Y., & Shipley, T. H. (1982)., Estimates of heat flow derived from gas hydrates., Geology, 10(7), 339-343. https://doi.org/10.1130/0091-7613(1982) 10<339:EOHFDF>2.0.CO;2
  16. Hyndman, R. D., Foucher, J. P., Yamano, M., Fisher, A., & Scientific Team of Ocean Drilling Program Leg 131. (1992)., Deep sea bottom-simulating-reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates., Earth and Planetary Science Letters, 109(3-4), 289-301.
  17. Dickens, G. R., & Quinby-Hunt, M. S. (1997)., Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications., Journal of Geophysical Research, 102(B1), 773. https://doi.org/10. 1029/96jb02941
  18. Zatsepina, Olga Ye, & Buffett, B. A. (1997)., Phase equilibrium of gas hydrate: Implications for the formation of hydrate in the deep sea floor., Geophysical Research Letters, 24(13), 1567-1570. https://doi.org/10.1029/97GL 01599
  19. Zatsepina, O. Ye., & Buffett, B. A. (1998)., Thermodynamic conditions for the stability of gas hydrate in the seafloor., Journal of Geophysical Research: Solid Earth, 103(B10), 24127-24139. https://doi.org/10.1029/ 98JB02137
  20. Handa, Y. P. (1990)., Effect of Hydrostatic Pressure and Salinity on the Satbility of Gas Hydrates., The Journal of Physical Chemistry, 94(6),252-2657. DOI:10.1021/j10036 9a077
  21. Van Der Waals, J. H., & Platteeuw, J. C. (1959)., Validity of Clapeyrons Equation for Phase Equilibria involving Clathrates., Nature, 183(4659), 462. https://doi.org/10. 1038/183462a0
  22. Davie, M. K., Zatsepina, O. Y., & Buffett, B. A. (2004)., Methane solubility in marine hydrate environments., Marine Geology, 203(1-2), 177-184. https://doi.org/10. 1016/S00 25-3227(03)00331-1
  23. Dholabhai, P. D., Englezos, P., Kalogerakis, N., & Bishnoi, P. R. (1991)., Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions., The Canadian Journal of Chemical Engineering, 69(3), 800-805. https://doi.org/10.1002/cjce.5450690324
  24. Vadachalam, N., Ramesh, S., Srinivasalu, S., Rajendran, G., Ramadass, G. A., & Atmanand, M. A. (2016)., Assessment of methane gas production from Indian gas hydrate petroleum systems., Applied Energy, 168, 649-660. https://doi.org/10.1017/CBO9781107415324.004
  25. McLellan, P.J., Gillen, K.P., Podetz, C.G, and Dallimore, S.R. (2005). Characteristics of natural fractures in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well; in Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada, (ed.) S.R. Dallimore and T.S. Collett. Geological Survey of Canada, Bulletin 585., undefined, undefined
  26. Boswell, Ray, Schoderbek, D., Collett, T. S., Ohtsuki, S., White, M., & Anderson, B. J. (2017)., The Iġnik Sikumi field experiment, Alaska North Slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs. Energy and Fuels, 31(1), 140-153. https://doi.org/10.1021/acs.energyfuels.6b01909, undefined
  27. Hillman, J. I. T., Cook, A. E., Daigle, H., Nole, M., Malinverno, A., Meazell, K., & Flemings, P. B. (2017)., Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico., Marine and Petroleum Geology, 86, 1357-1373. https://doi.org/ 10.1016/j.marpetgeo.2017.07.029
  28. Ruppel, C., Boswell, R., & Jones, E. (2008)., Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview., Marine and Petroleum Geology, 25(9), 819-829. https://doi.org/10. 1016/j.marpetgeo.2008.02.007
  29. Makogon, Y. F., Holditch, S. A., & Makogon, T. Y. (2005)., Russian field illustrates gas-hydrate production., Oil and Gas Journal, 103(5), 43-47.
  30. Ryu, B. J., & Riedel, M. (2017)., Gas hydrates in the Ulleung Basin, East Sea of Korea., Terrestrial, Atmospheric and Oceanic Sciences, 28(6), 943-963. https://doi.org/10.3319/TAO.2017.10.21.01
  31. Lee, M. W., & Collett, T. S. (2013)., Characteristics and interpretation of fracture-filled gas hydrate - An example from the Ulleung Basin, East Sea of Korea., Marine and Petroleum Geology, 47, 168-181. https://doi.org/10.1016/ j.marpetgeo.2012.09.003
  32. Bahk, J. J., Kim, G. Y., Chun, J. H., Kim, J. H., Lee, J. Y., Ryu, B. J., Collett, T. S. (2013)., Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea., Marine and Petroleum Geology, 47, 30-42. https://doi.org/10.1016/j.marpetgeo.2013.05.007
  33. Lee, J. Y., Kim, G. Y., Kang, N. K., Yi, B. Y., Jung, J. W., Im, J. H., Kim, D. S. (2013)., Physical properties of sediments from the Ulleung Basin, East Sea: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea (Korea)., Marine and Petroleum Geology, 47, 43-55. https://doi.org/10.1016/j.marpetgeo.2013.05.017
  34. Tréhu, A. M., Torres, M. E., Bohrmann, G., & Colwell, F. S. (2005)., Leg 204 synthesis: Gas hydrate distribution and dynamics in the central Cascadia accretionary complex., Proceedings of the Ocean Drilling Program: Scientific Results, 204(March). https://doi.org/10.2973/odp.proc.sr. 204.101.2006
  35. Escutia, C., Brinkhuis, H., Klaus, A., and the E. 318 S. (2011)., IODP Expedition 318 Site Map., Proceedings of the Integrated Ocean Drilling Program, 318, 1. https://doi.org/ 10.2204/iodp.proc.311.101.2006
  36. Riedel, M., Collett, T. S., & Malone, M. (2010)., Expedition 311 Synthesis: scientific findings., Proceedings of the IODP, 311, 311. https://doi.org/10.2204/ iodp.proc.311.213.2010
  37. Yang, S., Lei, Y., Liang, J., Holland, M., Schultheiss, P., & Lu, J. (2017)., Concentrated Gas Hydrate in the Shenhu Area, South China Sea: Results From Drilling Expeditions GMGS3 & GMGS4., Proceedings of 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 25-30 June, 2017.
  38. Popescu, I., Lericolais, G., Panin, N., De Batist, M., & Gillet, H. (2007)., Seismic expression of gas and gas hydrates across the western Black Sea., Geo-Marine Letters, 27(2-4), 173-183. https://doi.org/10.1007/s00367-007-0068-0
  39. Parlaktuna, M., & Erdogmuş, T. (2001)., Natural gas hydrate potential of the Black Sea., Energy Sources, 23(3), 203-211. https://doi.org/10.1080/00908310151133861
  40. Demirbas, A. (2010)., Methane from gas hydrates in the Black Sea., Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 32(2), 165-171. https://doi.org/10.1080/15567030802463885
  41. Merey, S., & Sinayuc, C. (2016c)., Investigation of gas hydrate potential of the Black Sea and modelling of gas production from a hypothetical Class 1 methane hydrate reservoir in the Black Sea conditions., Journal of Natural Gas Science and Engineering, 29, 66-79. https://doi.org/ 10.1016/j.jngse.2015.12.048
  42. Merey, S., & Sinayuc, C. (2016b)., Experimental set-up design for gas production from the Black Sea gas hydrate reservoirs., Journal of Natural Gas Science and Engineering, 33, 162-185. https://doi.org/10.1016/j.jngse. 2016.04.030
  43. Merey, S., & Sinayuc, C. (2016a)., Analysis of the Black Sea Gas Hydrates., International Journal of Science, Engineering and Technology, 10(8), 985-993.
  44. Komatsu, Y., Suzuki, K., & Fujii, T. (2014)., Sedimentary facies and paleoenvironments of a gas-hydrate-bearing sediment core in the eastern Nankai Trough, Japan., Marine and Petroleum Geology, 66, 358-367. https://doi.org/ 10.1016/j.marpetgeo.2015.02.038
  45. Suzuki, K., Schultheiss, P., Nakatsuka, Y., Ito, T., Egawa, K., Holland, M., & Yamamoto, K. (2014)., Physical properties and sedimentological features of hydrate-bearing samples recovered from the first gas hydrate production test site on Daini-Atsumi Knoll around eastern Nankai Trough., Marine and Petroleum Geology, 66, 346-357. https://doi.org/10.1016/j.marpetgeo.2015.02.025
  46. Fujii, T., Suzuki, K., Takayama, T., Tamaki, M., Komatsu, Y., Konno, Y., Nagao, J. (2014)., Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini- Atsumi Knoll in the eastern Nankai Trough, Japan., Marine and Petroleum Geology, 66, 310-322. https://doi.org/10.1016/j.marpetgeo.2015.02.037.
  47. Oyama, Ai, and Stephen M. Masutani (2017)., A Review of the Methane Hydrate Program in Japan., Energies, 10 (10). https://doi.org/10.3390/en10101447.
  48. Inada, Norihito and Koji Yamamoto (2014)., Data Report: Hybrid Pressure Coring System Tool Review and Summary of Recovery Result from Gas-Hydrate Related Coring in the Nankai Project., Marine and Petroleum Geology, 66, 323-45. https://doi.org/10.1016/j.marpetgeo.2015.02.023.
  49. Konno, Yoshihiro, Tetsuya Fujii, Akihiko Sato, Koya Akamine, Motoyoshi Naiki, Yoshihiro Masuda, Koji Yamamoto, and Jiro Nagao (2017)., Key Findings of the Worlds First Offshore Methane Hydrate Production Test off the Coast of Japan: Toward Future Commercial Production., Energy and Fuels, 31(3), 2607-16. https://doi.org/10.1021/acs.energyfuels.6b03143.
  50. Nouzé, H., P. Henry, M. Noble, V. Martin, and G. Pascal (2004)., Large Gas Hydrate Accumulations on the Eastern Nankai Trough Inferred from New High-Resolution 2-D Seismic Data., Geophysical Research Letters, 31(13), 2-5. https://doi.org/10.1029/2004GL019848.
  51. Zhao, Jiafei, Chuanxiao Cheng, Yongchen Song, Weiguo Liu, Yu Liu, Kaihua Xue, Zihao Zhu, Zhi Yang, Dayong Wang, and Mingjun Yang (2012). Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method., Energies, 5(5), 1292-1308. https://doi.org/10.3390/en5051292., undefined
  52. Yoneda, Jun, Akira Masui, Yoshihiro Konno, Yusuke Jin, Kosuke Egawa, Masato Kida, Takuma Ito, Jiro Nagao, and Norio Tenma (2014)., Mechanical Properties of Hydrate-Bearing Turbidite Reservoir in the First Gas Production Test Site of the Eastern Nankai Trough., Marine and Petroleum Geology, 66, 471-86. https://doi.org/10.1016/ j.marpetgeo.2015.02.029.
  53. Yamamoto, Koji (2014)., Overview and Introduction: Pressure Core-Sampling and Analyses in the 2012e2013 MH21 Offshore Test of Gas Production from Methane Hydrates in the Eastern Nankai Trough., Marine and Petroleum Geology, 66, 296-309. https://doi.org/10.1016/ j.marpetgeo.2015.02.024.
  54. Kaur, I., Mohanta, J., Singh, M., & Katna, N. (1992)., Potential areas of Gas Hydrate deposits in Mahanadi Offshore., 10th Biennial International Conference & Exposition, International Convention Center, Le Meridien, Kochi, 23-25 November, 2013.
  55. Sain, K., Ojha, M., Satyavani, N., Ramadass, G. A., Ramprasad, T., Das, S. K., & Gupta, H. (2012)., Gas-hydrates in Krishna-Godavari and Mahanadi Basins: New data., Journal of the Geological Society of India, 79(6), 553-556. https://doi.org/10.1007/s12594-012-0094-z
  56. Phillips, S. C., Johnson, J. E., Underwood, M. B., Guo, J., Giosan, L., & Rose, K. (2014)., Long-timescale variation in bulk and clay mineral composition of Indian continental margin sediments in the Bay of Bengal, Arabian Sea, and Andaman Sea., Marine and Petroleum Geology, 58(PA), 117-138. https://doi.org/10.1016/j.marpetgeo.2014.06.018.
  57. Kumar, P., Collett, T. S., Boswell, R., Cochran, J. R., Lall, M., Mazumdar, A., Yadav, U. S. (2014)., Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin., Marine and Petroleum Geology, 58(PA), 29-98. https://doi.org/10.1016/j.marpetgeo.2014. 07.031.
  58. Sain, K. (2017)., Gas hydrates: A possible future energy resource., Journal of the Geological Society of India, 89(4), 359-362. https://doi.org/10.1007/s12594-017-0615-x
  59. Collett, T. S., Boswell, R., Cochran, J. R., Kumar, P., Lall, M., Mazumdar, A., Vishwanath, K. (2014a)., Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01., Marine and Petroleum Geology, 58(PA), 3-28. https://doi.org/10.1016/j.marpetgeo.2014.07.021
  60. Winters, W. J., Wilcox-Cline, R. W., Long, P., Dewri, S. K., Kumar, P., Stern, L., & Kerr, L. (2014)., Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems., Marine and Petroleum Geology, 58(PA), 139-167. https://doi.org/10.1016/ j.marpetgeo.2014.07.024
  61. Liu, Y., & Gamwo, I. K. (2012)., Comparison between equilibrium and kinetic models for methane hydrate dissociation., Chemical Engineering Science, 69(1), 193-200. https://doi.org/10.1016/j.ces.2011.10.020.
  62. Saw, V. K., Ahmad, I., Mandal, A., Udayabhanu, G., & Laik, S. (2012)., Methane hydrate formation and dissociation in synthetic seawater., Journal of Natural Gas Chemistry, 21(6), 625-632. https://doi.org/10.1016/S1003-9953(11)60411-8
  63. Claypool, G. E., & Kaplan, I. R. (1974)., The origin and distribution of methane in marine sediments., In Natural gases in marine sediments, Springer, Boston, M.A. (pp. 99-139).
  64. Cha, S. B., Ouar, H., Wildeman, T. R., & Sloan, E. D. (1988)., A third-surface effect on hydrate formation., The Journal of Physical Chemistry, 92(23), 6492-6494. DOI: 10.1021/j100334a006
  65. Barduhn, A. J., Towlson, H. E., & Hu, Y. C. (1962)., The properties of some new gas hydrates and their use in demineralizing sea water., AIChE Journal, 8(2), 176-183. https://doi.org/10.1002/aic.690080210
  66. Bjorkman, T., & Leopold, A. C. (1987)., Effect of Inhibitors on Hydrate Formation., Plant Physiol., 84, 847-850.
  67. De Roo, J. L., Peters, C. J., Lichtenthaler, R. N., & Diepen, G. A. M. (1983)., Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure., AIChE Journal, 29(4), 651-657. DOI: 10.1002/aic.690290420
  68. Menten, P. D., Parrish, W. R., & Sloan, E. D. (1981)., Effect of inhibitors on hydrate formation., Industrial & Engineering Chemistry Process Design and Development, 20(2), 399-401. DOI:10.1021/i200013a035
  69. Englezos, P., & Bishnoi, P. R. (1988)., Prediction of gas hydrate formation conditions in aqueous electrolyte solutions., AIChE Journal, 34(10), 1718-1721. https://doi.org/10.1002/aic.690341017
  70. Dickens, Gerald R., & Quinby-Hunt, M. S. (1994)., Methane hydrate stability in seawater., Geophysical Research Letters, 21(19), 2115-2118. https://doi.org/10. 1029/94GL01858
  71. Maekawa, Tatsuo, Itoh, S., Sakata, S., Igari, S., & Imai, N. (1995)., Pressure and temperature conditions for methane hydrate dissociation in sodium chloride solutions., Geochemical Journal, 29(5), 325-329. https://doi.org/10. 2343/geochemj.29.325
  72. Mohammadi, A. H., Kraouti, I., & Richon, D. (2009)., Methane hydrate phase equilibrium in the presence of NaBr, KBr, CaBr2, K2CO3, and MgCl2 aqueous solutions: Experimental measurements and predictions of dissociation conditions., Journal of Chemical Thermodynamics, 41(6), 779-782. https://doi.org/10.1016/j.jct.2009.01.004
  73. Mohammadi, A. H., & Richon, D. (2009)., Methane hydrate phase equilibrium in the presence of salt (NaCl, KCl, or CaCl2) + ethylene glycol or salt (NaCl, KCl, or CaCl2) + methanol aqueous solution: Experimental determination of dissociation condition., Journal of Chemical Thermodynamics, 41(12), 1374-1377. https://doi.org/10.1016/j.jct.2009.06.012
  74. Cha, M., Hu, Y., & Sum, A. K. (2016)., Methane hydrate phase equilibria for systems containing NaCl, KCl, and NH4Cl., Fluid Phase Equilibria, 413, 2-9. https://doi.org/10.1016/j.fluid.2015.08.010
  75. Maekawa, T. (2001)., Equilibrium conditions for gas hydrates of methane and ethane mixtures in pure water and sodium chloride solution., Geochemical Journal, 35(1), 59-66. https://doi.org/10.2343/geochemj.35.59
  76. Aregbe, A. G. (2018)., A Generalized Correlation for Predicting Methane Hydrate Equilibrium Data in Pure Water and Aqueous Solutions of Chloride Salts at pressure up to 500 MPa, (April)., DOI:10.1002/gch2.201800069
  77. WANG, Qingshun, Keman FENG, Jian LI, and Tongyou WANG (2008)., Evaluation of Gas Hydrate Inhibition in Deep Water Drilling Fluid Based on High Pressure Microcalorimetery [J]., Oil Drilling & Production Technology,30(2), 41-44.
  78. Meshram, S. B., Omkar S. Kushwaha, Palle Ravinder Reddy, G Bhattacharjee, and R Kumar (2019)., Investigation on the effect of oxalic acid, succinic acid and aspartic acid on the gas hydrate formation kinetics., Chinese Journal of Chemical Engineering.
  79. Tang, Cuiping, and Deqing Liang (2019)., Inhibitory Effects of Novel Green Inhibitors on Gas Hydrate Formation., Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2019.02.016.
  80. Ross, M. J., & Toczylkint, L. S. (1992)., Hydrate Dissociation Pressures for Methane or Ethane in the Presence of Aqueous Solutions of Triethylene Glycol., Journal of Chemical and Engineering Data, 37(4), 488-491. https://doi.org/10.1021/je00008a026.
  81. Partoon, Behzad, and Jafar Javanmardi (2013)., Effect of Mixed Thermodynamic and Kinetic Hydrate Promoters on Methane Hydrate Phase Boundary and Formation Kinetics., Journal of Chemical and Engineering Data, 58 (3), 501-9. https://doi.org/10.1021/je301153t.
  82. Mandal, Ajay, and Sukumar Laik (2008)., Effect of the Promoter on Gas Hydrate Formation and Dissociation., Energy and Fuels, 22(4), 2527-32. https://doi.org/10.1021 /ef800240n.
  83. Javanmardi, J., Moshfeghian, M., & Maddox, R. N. (2001)., An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol., Canadian Journal of Chemical Engineering, 79(3), 367-373. https://doi.org/10.1002/cjce.5450790309
  84. Zhengfu, N., Shixi, Z., Qin, Z., Shuangyi, Z., & Guangjin, C. (2007)., Experimental and modeling study of kinetics for methane hydrate formation with tetrahydrofuran as promoter., Petroleum Science, 4(1), 61-65. https://doi.org/ 10.1007/bf03186575
  85. Handa, Y. P., Zakrzewski, M., & Fairbridge, C. (1992)., Effect of restricted geometries on the structure and thermodynamic properties of ice., Journal of Physical Chemistry, 96(21), 8594-8599. https://doi.org/10.1021 /j100200a070
  86. Bondarev, E. A., Groisman, A. G., & Savvin, A. Z. (1996)., Porous medium effect on phase equilibrium of tetrahydrofuran hydrate., In International conference on natural gas hydrates, June (2-6), 89-93.
  87. Melnikov, V. P., Nesterov, A. N., Reshetnikov, A. M., Istomin, V. A. & Kwon, V. G. (2010)., Stability and growth of gas hydrates below the ice-hydrate-gas equilibrium line on the P-T phase diagram., Chem. Eng. Sci., 65, 906-914. https://doi.org/10.1016/j.ces.2009.09.041
  88. Miyawaki, J., Kanda, T., Suzuki, T., Okui, T., Maeda, Y., & Kaneko, K. (1998)., Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces., Journal of Physical Chemistry B, 102(12), 2187-2192. https://doi.org/10.1021/jp980034h
  89. Uchida, T., Ebinuma, T., & Ishizaki, T. (1999)., Dissociation condition measurements of methane hydrate in confined small pores of porous glass., Journal of Physical Chemistry B, 103(18), 3659-3662. https://doi.org/10.1021/jp984559l
  90. Uchida, T., Ebinuma, T., Takeya, S., Nagao, J., & Narita, H. (2002)., Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media., Journal of Physical Chemistry B, 106(4), 820-826. https://doi.org/10.1021 /jp012823w
  91. Kang, S., Ryu, H., & Seo, Y. (2007)., Phase Behavior of CO2 and CH4 Hydrate in Porous Media., World Academy of Science, Engineering and Technology, 33(9), 183-188.
  92. Wang, Y., Zhan, L., Feng, J.-C., & Li, X.-S. (2019)., Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation., Energies, 12, 4227. https://doi.org/10.3390/en12224227
  93. Smith, D. H., Wilder, J. W., & Seshadri, K. (2002)., Methane Hydrate Equilibria in Silica Gels with Broad Pore-Size Distributions., AIChE Journal, 48(2), 393-400. https://doi.org/10.1002/aic.690480222
  94. Voronov, V. P., Gorodetskii, E. E., & Safonov, S. S. (2007)., Thermodynamic properties of methane hydrate in quartz powder., Journal of Physical Chemistry B, 111(39), 11486-11496. https://doi.org/10.1021/jp0724368
  95. Handa, Y. P., & Stupin, D. (1992)., Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-??-radius silica gel pores., Journal of Physical Chemistry, 96(21), 8599-8603. https://doi.org/ 10.1021/j100200a071
  96. Seo, Y., Lee, H., & Uchida, T. (2002)., Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling., Langmuir, 18(24), 9164-9170.
  97. Seshadri, K., Wilder, J. W., & Smith, D. H. (2001)., Measurements of equilibrium pressures and temperatures for propane hydrate in silica gels with different pore-size distributions., Journal of Physical Chemistry B, 105(13), 2627-2631. https://doi.org/10.1021/jp0040244
  98. Zhang, W., Wilder, J. W., & Smith, D. H. (2002)., Interpretation of ethane hydrate equilibrium data for porous media involving hydrate-ice equilibria., AIChE Journal, 48(10), 2324-2331. https://doi.org/10.1002/aic. 690481022
  99. Anderson, R., Llamedo, M., Tohidi, B., & Burgass, R. W. (2003)., Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica., Journal of Physical Chemistry B, 107(15), 3507-3514. https://doi.org/10.1021/jp0263370
  100. Lu, J., Li, D., He, Y., Shi, L., Liang, D., & Xiong, Y. (2019)., Experimental Study of Sand Production during Depressurization Exploitation in Hydrate Silty-Clay Sediments., Energies, 12, 4268.