International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Height and diameter at breast height relationship of mangroves in Kerala coast, India

Author Affiliations

  • 1Division of Forest Botany, Kerala Forest Research Institute, Peechi 680 653, Kerala, India
  • 2Division of Forest Botany, Kerala Forest Research Institute, Peechi 680 653, Kerala, India
  • 3Division of Soil Science, Kerala Forest Research Institute, Peechi 680 653, Kerala, India

Int. Res. J. Environment Sci., Volume 9, Issue (4), Pages 1-6, October,22 (2020)


The diameter at breast height in relation to the height (Dbh:H) in mangroves may differ with respect to the region and regions generating large-volume assessments of biomass in the above-ground results in fallacy if these differences in species are neglected. A performance assessment with 11 existing non-linear and linear models were held to pick the optimum solution that resolves the Dbh-h relation in mangroves lying in proximity to the Western coastal line of India using a dataset of heights and Dbh of 1034 trees. To assess the chosen models, we adopt AIC system. As per the inference, monomolecular model with a value of 4933.43 (AIC) was bet fit for pooled data.


  1. Blasco, F. (1975)., Mangroves of India. French Institute of Pondicherry., Travaux de la Section Scientifique et Technique, 14(3), 180.
  2. Basha, S.C. (1992)., Mangroves of Kerala- A fast disappearing asset., Indian forester, 120(2), 175-189.
  3. Alongi, D.M. (2014)., Carbon Cycling and Storage in Mangrove forests., Annual Review of Marine Sciences, 6, 195-219.
  4. Donato, D. C. Kauffman, J. B. Murdiyarso, D. Kurnianto, S. Stidham, N. and Kanninen, N. (2011)., Mangroves among the most carbon-rich forests in the tropics., Nature Geo Science, 4, 293-297.
  5. Pendleton, L. Donato, D.C. Murray, B. C. Crooks, S. Jenkins, W. A. Sifleet, S. Craft, C., Fourqurean, J. W. Kauffman, J. B. and Marbà, N. (2012)., Estimating global blue carbon emissions from conversion and degradation of vegetated coastal ecosystems., Plo Se one, 7, 42- 43.
  6. Duarte, C. M.Middelburg, J. and Caraco, N. (2005)., Major role of marine vegetation on the oceanic carbon cycle., Biogeosciences, 2, 1-8.
  7. Bouillon, S. Borges, A. V. Castañeda M. E. Diele, K. Dittmar, T. Duke, N. C. Kristensen, E. Lee, S. Y. Marchand, C. Middelburg, J. J. Rivera-Monroy, V. H. Smith III, T. J. and Twilley, R. R. (2008)., Mangrove production and carbon sinks: A revision of global budget estimates., Global Biogeochemical Cycle, 22, 12-34. doi: 10.1029/2007GB003052.
  8. Limpens, J. Berendse, F. Blodau, C. Canadell, J.G. Freeman, C. and Holden, J. (2008)., Peatlands andthe carbon cycle: from local processes to global implications -a synthesis., Biogeosciences, 82(5), 1475-1491
  9. Houghton, R. A. (2007)., Balancing the global carbon budget., Annual Review of Earth and Planetary Sciences, 20, (35), 313-347.
  10. Lianjun Zhang, Changhui Peng, Shongming Huang and Xiaolu Zhou (2001)., Developing eco region-based height-diameter models for jack pine and black spruce in Ontario., Ministry of Nature Resource, Ontario, CA, USA. pp 2-30. ISBN: 077-94-156-12.
  11. Sujanapal Puthiyapurayil and Sasidharan Nanu (2014)., Handbook on Mangroves and Mangrove Associates of Kerala., Kerala State Biodiversity Board, Thiruvananthapuram. pp 30-37. ISBN: 819-20-338-80.
  12. IMD Report (2019)., National Climate Centre, India. Meteorological Department. Data Reference Link.,
  13. R. Development Core Team (2011)., R A language and environment for statistical computing., R Foundation for Statistical Computing, Vienna. RC Team. URL http://www. R-project. org
  14. Burnham, K. P., & Anderson, D. R. (2002)., A practical information-theoretic approach. Model selection and multimodal inference., 2nd ed. Springer, New York, 2.
  15. Chave, J. Andalo, C. Brown, S. Cairns, M.A. Chambers, J. Q. Eamus, D. Folster, H. Fromard, F. Higuchi, N. Kira, T. Lescure, J. P. Nelson, B. W. Ogawa, H. Puig, H. Riera, B. and Yamakura, T. (2005)., Tree allometry and improved estimation of carbon stocks and balance in tropical forests., Oecologia, 145(2), 87-99.
  16. Batista, J.L. Couto, H.T.Z, and Marquesini, M. (2001)., Performance of height-diameter relationship models: analysis in three forest types., Forestry Science, 60(3), 149-163.
  17. Fang, R. and Bailey, R.L. (1979)., The potential of Weibull-type functions as flexible growth curves: Discussion., Canadian Journal of Forestry Research, 10(2), 117-118.
  18. Vanclay, J. K. (1995)., Synthesis: growth models for tropical forests: a synthesis of models and methods., Forest Science, 41(1), 7-42.
  19. Curtis, R.O. (1967)., Height-diameter and height-diameter-age equations for second-growth Douglas-fir., Forestry Science, 13(3), 365-375.
  20. Tang, S. (1994)., Self-adjusted height-diameter curves and one entry volume model., Forestry Science, 7(2), 512-518.
  21. Huang, S., and Titus, S.J. (1992)., Comparison of nonlinear height-diameter functions for major Alberta tree species., Canadian Journal of Forestry Research, 22(2-3), 1297- 1304.