8th International Science Congress (ISC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Chemometric modeling of depruration rate constants of polycyclic aromatic hydrocarbons in mussels (Elliptiocomplanata)

Author Affiliations

  • 1Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India

Int. Res. J. Environment Sci., Volume 7, Issue (1), Pages 22-27, January,22 (2018)


This paper describes the QSAR study to predict the depuration rate constants (kd) of a series of polycyclic aromatic hydrocarbons (PAHs) for mussels, Elliptiocomplanata. The reported Logkd values of 26 compounds have been mapped linearly by means of stepwise multiple linear regression and non-linearly by artificial neural network trained with Levenberg-Marquardt (LM) algorithm, using molecular descriptors derived online from mole-db software. Descriptors selected by SW-MLR were used to develop non-linear model. The models were validated for predictability by both internal and external validation. Both linear and non-linear models satisfy the criteria of external validation as recommended by Golbraikh and Trospha. Comparison of quality of best ANN (R2 = 0.96) model with SW-MLR (R2 = 0.94) model showed that ANN trained with robust LM algorithm has better predictive power. Applicability domain analysis has also revealed that the suggested models have acceptable predictability.


  1. Zedeck M.S. (1980)., Polycyclic aromatic hydrocarbons: a review., J Environ PatholToxicol, 3(5-6), 537-567.
  2. Cherng S.H., Lin S.T. and Lee H. (1996)., Modulatory effects of polycyclic aromatic hydrocarbons on the mutagenicity of 1-nitropyrene: a structure-activity relationship study., Mut Res, 367(4), 177-185.
  3. Lewtas J., Walsh D., Williams R. and Dobias L. (1997)., Air pollution exposure DNA adduct dosimetry in humans and rodents: evidence for non-linearity at high doses., Mut Res, 378(1-2), 51-63.
  4. Levin W., Wood A., Chang R., Ryan D., Thomas P., Yagi H. and Conney A. (1982)., Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens., Drug metabolism reviews, 13(4), 555-580.
  5. Morrissey C.A., Bendell-Young L.I. and Elliott J.E. (2005)., Identifying sources and biomagnification of persistent organic contaminants in biota from mountain streams of southwestern British Columbia, Canada., Environ. Sci. Technol., 39(20), 8090-8098.
  6. Galassi S., Bettinetti R., Neri M.C.,Jeannot R., Dagnac T., Bristeau S., Sakkas V., Albanis T., Boti V., Valsamaki T., Falandysz J. and Schulte-Oehlmann U. (2008)., A multispecies approach for monitoringpersistent toxic substances in the Gulf of GdaoŽ sk (Baltic sea)., Ecotoxicol.Environ. Saf., 69(1), 39-48.
  7. Morrison H., Lazar R., Haffner G.D. and Yankovich T. (1995)., Elimination rate constants of 36 PCBs in zebra mussels (Dreissena polymorpha) and exposure dynamics in the Lake St. Clair-Lake Erie corridor., Canadian journal of fisheries and aquatic sciences, 52(12), 2574-2582.
  8. Uno S., Shiraishi H., Hatakeyama S. and Otsuki A. (1997)., Uptake and depuration kinetics and BCFs of several pesticides in three species of shellfish (Corbicula leana, Corbicula japonica, and Cipangopludina chinensis): comparison between field and laboratory experiment., Aquatic toxicology, 39(1), 23-43.
  9. Weisbrod A.V., Burkhard L.P., Arnot J., Mekenyan O., Howard P.H., Russom C. and Lutz C. (2007)., Workgroup report: review of fish bioaccumulation databases used to identify persistent, bioaccumulative, toxic substances., Environmental Health Perspectives, 115(2), 255.
  10. Leo A. and Hoekman D.H. (1995)., Exploring QSAR.:. Fundamentals and applications in chemistry and biology, An American Chemical Society Publication.
  11. Manallack D.T. and Livingston D.J. (1999)., Neural network indrug discovery: have they lived up their promise?., Eur. J. Med.Chem., 34(3), 195-208.
  12. Maier H.R. and Dandy G.C. (2000)., Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications., Environmental Modelling & Software, 15, 101-124.
  13. Kaiser K.L. (2003)., Neural networks for effect prediction in environmental and health issues using large datasets., Molecular Informatics, 22(2), 185-190.
  14. Turner J.V., Maddalena D.J. and Cutler D.J. (2004)., Pharmacokinetic parameter prediction from drug structure using artificial neural networks., International journal of pharmaceutics, 270(1), 209-219.
  15. Hecht D., Cheung M. and Fogel G.B. (2008)., QSAR using evolved neural networks for the inhibition of mutant PfDHFR by pyrimethamine derivatives., Biosystems, 92(1), 10-15.
  16. Russell R.W. and Gobas F.A. (1989)., Calibration of the freshwater mussel, Elliptio complanata, for quantitative biomonitoring of hexachlorobenzene and octachlorostyrene in aquatic systems., Bulletin of environmental contamination and toxicology, 43(4), 576-582.
  17. Gewurtz S.B., Drouillard K.G., Lazar R. and Haffner G.D. (2002)., Quantitative biomonitoring of PAHs using the Barnes mussel (Elliptio complanata)., Archives of environmental contamination and toxicology, 43(4), 0497-0504.
  18. Li F., Liu X., Zhang L., You L., Wu H., Li X. and Yu J. (2011)., QSAR studies on the depuration rates of polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and polychlorinated biphenyls in mussels (Elliptio complanata)., SAR and QSAR in Environmental Research, 22(5-6), 561-573.
  19. Wu D., Liu X., Wang L., Wang L., Xu M., Sun T. and Zhou J. (2009)., QSARs on the depuration rate constants of polycyclic aromatic hydrocarbons in Elliptio complanata., Molecular Informatics, 28(5), 537-541.
  20. SPSS I. (2012)., Statistics for windows, version 20.0., IBM Corp., Armonk NY.
  21. Matlab R. (2013)., Version 8.1. 0.604 (R2013a)., Natrick, Massachusetts: The MathWorks Inc.
  22. Ballabio D., Manganaro A., Consonni V., Mauri A. and Todeschini R. (2009)., Introduction to MOLE DB-on-line molecular descriptors database., MATCH Commun Math Comput Chem, 62, 199-207.
  23. Alexander G. and Alexander T. (2002)., Beware of Q2., J Mol Graph Model, 20(4), 269-276.
  24. Sahigara F., Mansouri K., Ballabio D., Mauri A., Consonni V. and Todeschini R. (2012)., Comparison of different approaches to define the applicability domain of QSAR models., Molecules, 17(5), 4791-4810.
  25. Gramatica P. (2007)., Principles of QSAR models validation: internal and external., Molecular Informatics, 26(5), 694-701.
  26. Roy K., Kar S. and Ambure P. (2015)., On a simple approach for determining applicability domain of QSAR models., ChemometrIntell Lab Syst., 145, 22-29.
  27. Snedecor G.W. and Cochran W.G. (1967)., Statistical methods, Oxford and IBH publishing Co., pvt. Ltd., New Delhi, 381-418.
  28. Andrea T.A. and Kalayeh H. (1991), Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors., J. Med. Chem., 34(9), 2824-2836.
  29. Roy K., Das R.N., Ambure P. and Aher R.B. (2016)., Be aware of error measures. Further studies on validation of predictive QSAR models., Chemometrics and Intelligent Laboratory Systems, 152, 18-33.