International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Toxicity of quaternary mixtures of metals to aquatic microbial community

Author Affiliations

  • 1Department of Microbiology, Federal University of Technology Owerri, P.M.B.1526, Owerri, Imo State, Nigeria
  • 2Department of Microbiology, Chukwuemeka Odumegwu Ojukwu University, Uli Campus, P.M.B. 02 Ihiala, Anambra State, Nigeria
  • 3Department of Microbiology, Federal University of Technology Owerri, P.M.B.1526, Owerri, Imo State, Nigeria
  • 4Department of Microbiology, Federal University of Technology Owerri, P.M.B.1526, Owerri, Imo State, Nigeria

Int. Res. J. Environment Sci., Volume 6, Issue (3), Pages 30-37, March,22 (2017)

Abstract

The toxicities of quaternary mixtures of metal ions [Cd(II), Co(II), Zn(II) and Ni(II)] against microbial community of river water were assessed using inhibition of INT-dehydrogenase activity as endpoint and uniform design concentration ratios. The effective concentrations (EC50) were estimated using logistic concentration-response model. The toxicity of the individual metal ion was ranked as Cd(II) > Co(II) > Zn(II) > Ni(II). In comparison to observed toxicities, the concentration addition (CA) and independent action (IA) models predicted the combined toxicities of the mixtures with varying accuracy. The deviations from accurate prediction of the mixture toxicities indicate possible synergistic and antagonistic effects of the mixtures. However, the model deviation ratios (MDR) based on 50% effective concentrations (EC50s) for most mixtures lie between 0.5 and 2.0. Thus, the combined action of the mixtures were considered to be additive.

References

  1. Roane Timberley M. and Pepper Ian L. (2000), Microorganisms and metal pollutants., In: Raina M. Maier, Ian L. Pepper, Charles P. Gerba (Eds.). Environmental Microbiology. Academic Press, New York, 421-441. ISBN: 0124975704
  2. Mergeay M., Nies D., Schlegel H.G., Gerits J., Charles P. and van Gijsegem F. (1985)., Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-borne resistance to heavy metals., Journal of Bacteriology, 162(1), 328-334.
  3. Bruins M.R., Kapil S. and Oehme F.W. (2000)., Microbial resistance to metals in the environment., Ecotoxicology and Environmental Safety, 45(3), 198-207. http://dx.doi.org/ 10.1006/eesa.1999.1860
  4. Ji G. and Silver S. (1995)., Bacterial resistance mechanisms for heavy metals of environmental concern., Journal of Industrial Microbiology, 14(2), 61-75. http://dx.doi.org/ 10.1007/BF01569887
  5. Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A. and Stefanidou M.E. (2012)., Zinc and human health: an update., Archives of Toxicology, 86(4), 521-534. http://dx.doi.org/10.1007/s00204-011-0775-1
  6. Choudhury R. and Srivastava S. (2001)., Zinc resistance mechanisms in bacteria., Current Science, 81(7), 768-775.
  7. Kasahara M. and Anraku Y. (1974)., Succinate and NADH oxidase systems of Escherichia coli membrane vesicles., mechanism of selective inhibition of the system by zinc ions. Journal of Biochemistry, 76(5), 967-976.
  8. Beard S.J., Hughes M.N. and Poole R.K. (1995)., Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations., FEMS Microbiology Letters, 131(2), 205-210. http://dx.doi.org/10.1111/ j.1574-6968.1995.tb07778.x
  9. Nweke C.O. and Orji J.C. (2009)., Toxicity of heavy metals to microbial community of New Calabar River., Nigerian Journal of Biochemistry and Molecular Biology, 24(1), 48-54.
  10. Gikas P. (2007)., Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): an isobolographic approach., Journal of Hazardous Materials, 143(1), 246-256. http://dx.doi.org/10.1016/j. jhazmat.2006.09.019
  11. Gikas P. (2008)., Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: A review., Journal of Hazardous Materials, 159(2), 187-203. http://dx.doi.org/ 10.1016/j.jhazmat.2008.02.048
  12. Nweke C.O., Okolo J.C., Nwanyanwu C.E. and Alisi C.S. (2006)., Response of planktonic bacteria of New Calabar River to zinc stress., African Journal of Biotechnology, 5(8), 653-658.
  13. Nweke C.O., Alisi C.S., Okolo J.C. and Nwanyanwu C.E. (2007)., Toxicity of zinc to heterotrophic bacteria from a tropical river sediment., Applied Ecology and Environmental Research, 5(1), 123-132.
  14. Orji J.C., Nweke C.O., Nwabueze R.N., Anyaegbu B., Chukwu J.C., Chukwueke C.P. and Nwanyanwu C.E. (2008)., Impacts of some divalent cations on periplasmic nitrate reductase and dehydrogenase enzymes of Escherichia, Pseudomonas and Acinetobacter species., Revista Ambiente e Água, 3(2), 5-18.
  15. Nweke C.O. and Okpokwasili G.C. (2011)., Inhibition of β-galactosidase and α-glucosidase synthesis in petroleum refinery effluent bacteria by zinc and cadmium., Journal of Environmrntal Chemistry and Ecotoxicology, 3(3), 68-74.
  16. Nweke C.O. and Okpokwasili G.C. (2012)., Kinetics of dose-response relationship of heavy metals with dehydrogenase activity in wastewater bacteria., Journal of Research in Biology, 2(4), 392-402.
  17. Nweke C.O., Ntinugwa C., Obah I.F., Ike S.C., Eme G.E., Opara E.C. Okolo J.C and Nwanyanwu C.E. (2007)., In vitro effects of metals and pesticides on dehydrogenase activity in microbial community of cowpea (Vigna unguiculata) rhizoplane., African Journal of Biotechnology, 6(3), 290 – 295, http://dx.doi.org/10.5897/AJB06.680
  18. Nweke C.O., Ike C.C. and Ibegbulem C.O. (2016)., Toxicity of quaternary mixtures of phenolic compounds and formulated glyphosate to microbial community of river water., Ecotoxicology and Environmental Contamination, 11(1), 63-71. http://dx.doi.org/10.5132/eec.2016.01.09
  19. Olmstead A.W. and LeBlanc G.A. (2005)., Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model., Integrated Environmental Assessment and Management, 1(2), 1-9, http://dx.doi.org/10.1897/IEAM_2004-005R.1
  20. Rider C.V. and LeBlanc G.A. (2005)., An integrated addition and interaction model for assessing toxicity of chemical mixtures., Toxicological Sciences, 87(2), 520-528. http://dx.doi.org/10.1093/toxsci/kfi247
  21. Belden J.B., Gilliom R.J. and Lydy M.J. (2007)., How well can we predict the toxicity of pesticide mixtures to aquatic life?., Integrated Environmental Assessment and Management, 3(3), 364-372. http://dx.doi.org/10.1002/ ieam.5630030326
  22. Li Y., Zhang B., He X., Cheng W-H., Xu W., Luo Y., Liang R., Luo H. and Huang K. (2014)., Analysis of individual and combined effects of ochratoxin A and zearalenone on HepG2 and KK-1 cells with mathematical models., Toxins, 6(4), 1177-1192. http://dx.doi.org/10.3390/toxins6041177
  23. Lee J.S., Lee K.T. and Park G.S. (2005)., Acute toxicity of heavy metals, tributyltin, ammonia and polycyclic aromatic hydrocarbons to benthic amphipod Grandidierella japonica., Ocean Science Journal, 40(2), 61-66. http://dx.doi.org/10.1007/BF03028586
  24. Nies D.H. (1992)., Resistance to cadmium, cobalt, zinc, and nickel in microbes., Plasmid, 27(1), 17-28.
  25. Rossel D. and Tarradellas J. (1991)., Dehydrogenase activity of soil microflora: significance in ecotoxicological tests., Environmental Toxicology, 6(1), 17-33. http://dx.doi.org/10.1002/tox.2530060104
  26. Nies D.H. (1999)., Microbial heavy-metal resistance., Applied Microbiology and Biotechnology, 51(6), 730-750.
  27. Stohs S.J. and Bagchi D. (1995)., Oxidative mechanisms in the toxicity of metal ions., Free Radical Biology and Medicine, 18(2), 321-336. http://dx.doi.org/10.1016/0891-5849(94)00159-H
  28. Goyer R.A. (1997)., Toxic and essential metal interactions., Annual Review of Nutrition, 17(1), 37-50. http://dx.doi.org/10.1146/annurev.nutr.17.1.37
  29. Bitton G., Dutton R. and Koopman B. (1988)., Cell permeability to toxicants: an important parameter in toxicity tests using bacteria., Critical Reviews in Environmental Science and Technology, 18(3), 177-188. http://dx.doi.org/10.1080/10643388809388347
  30. Ince N.H., Dirilgen N., Apikyan I.G., Tezcanli G. and Üstün B. (1999)., Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach., Archives of Environmental Contamination and Toxicology, 36(4), 365- 372. http://dx.doi.org/10.1007/PL00006607
  31. Preston S., Coad N., Townend J., Killham K. and Paton G.I. (2000)., Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic?., Environmental Toxicology and Chemistry, 19(3), 775-780. http://dx.doi.org/10.1002/etc.5620190332
  32. Fulladosa E., Murat J.C. and Villaescusa I. (2005)., Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target., Chemosphere, 58(5), 551-557. http://dx.doi.org/10.1016/j .chemosphere.2004.08.007
  33. Nweke C.O., Orji J.C. and Ahumibe N.C. (2015)., Prediction of phenolic compound and formulated glyphosate toxicity in binary mixtures using Rhizobium species dehydrogenase activity., Advances in Life Sciences, 5(2), 27-38. http://dx.doi.org/10.5923/j.als.20150502.01
  34. Backhaus T., Altenburger R., Boedeker W., Faust M., Scholze M. and Grimme L.H. (2000)., Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri., Environmental Toxicology and Chemistry, 19(9), 2348-2356. http://dx.doi.org/10.1002/etc.5620190927
  35. Faust M., Altenburger R., Backhaus T., Blanck H., Boedeker W., Gramatica P., Hamer V., Scholze M., Vighi M. and Grimme L.H. (2003)., Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action., Aquatic Toxicology, 63(1), 43-63. http://dx.doi.org/10.1016/S0166-445X(02)00133-9
  36. Liu S.S., Song X.Q., Liu H.L., Zhang Y.H. and Zhang J. (2009)., Combined photobacterium toxicity of herbicide mixtures containing one insecticide., Chemosphere, 75(3), 381-388. http://dx.doi.org/10.1016/j.chemosphere.2008.12.026
  37. Boedeker W., Drescher K., Altenburger R., Faust M. and Grimme L.H. (1993)., Combined effects of toxicants: the need and soundness of assessment approaches in ecotoxicology., Science of the Total Environment, 134, 931-939. http://dx.doi.org/10.1016/s0048-9697(05)80100-7
  38. Cedergreen N. (2014)., Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology., PLoS ONE 9(5), e96580, http://dx.doi.org/10.1371/journal.pone.0096580,
  39. Petersen K. and Tollefsen K.E. (2011)., Assessing combined toxicity of estrogen receptor agonists in a primary culture of rainbow trout (Oncorhynchus mykiss) hepatocytes., Aquatic Toxicology, 101(1), 186-195. http://dx.doi.org/10.1016/ j.aquatox.2010.09.018
  40. Zeb B., Ping Z., Mahmood Q., Lin Q., Pervez A., Irshad M., Bilal M., Bhatti Z.A. and Shaheen S. (2016)., Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S., Applied Water Science, 6, 1-8. http://dx.doi.org/10.1007/s13201-016-0385-4
  41. Salgueiro M.J., Zubillaga M., Lysionek A., Sarabia M., Caro R., Paoli T.D., Hager A., Weill R. and Boccio J. (2000)., Zinc as an essential micronutrient: a review., Nutrition Research, 20(5), 737-755. http://dx.doi.org/10.1016/S0271-5317(00)00163-9
  42. Satarug S., Baker J.R., Urbenjapol S., Haswell-Elkins M., Reilly P.E., Williams D.J. and Moore M.R. (2003)., A global perspective on cadmium pollution and toxicity in non- occupationally exposed population., Toxicology Letters, 137(1), 65-83. http://dx.doi.org/10.1016/S0378-4274(02)00381-8
  43. Xu X., Li Y., Wang Y. and Wang Y. (2011)., Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay., Toxicology in Vitro, 25(1), 294-300. http://dx.doi.org/10.1016/j.tiv.2010.09.007
  44. Khan M.S., Zaidi A., Wani P.A. and Oves M. (2009)., Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils., Environmental Chemistry Letters, 7(1), 1-19. http://dx.doi.org/10.1007/s10311-008-0155-0