

International Research Journal of Environment Sciences_ Vol. **5(5)**, 48-52, May (**2016**)

Assessment of Natural Radio activity in Rock Samples around South Kordofan State, Sudan

Amna M. Hassan^{1,2}, Abdelrahman E. Mohamed Osman^{2,3}, Mustafa M. O. Ahamed⁴, Nooreldin Fadol⁵, Hajo Idriss^{4,6} and Nserdin A. Ragab⁴

¹Physics Department, College of Sciences and Arts in Al-Namas (Female), University of Bisha, Saudi Arabia

² Physics Department, Faculty of Sciences, Sudan University of Sciences and Technology, Sudan

³ Physics Department, Faculty of sciences, Taibah University, Al- Medina Al-Munawarah, Saudi Arabia

⁴Sudan Atomic Energy Commission, P.O. Box 3001, Khartoum, Sudan

⁵ Physics Department, Faculty of Education, University of Blue Nile, Sudan

⁶Committee on Radiation and Environmental Pollution Protection, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia

Available online at: www.isca.in, www.isca.me

Received 23th Februay 2016, revised 28th March 2016, accepted 29th April 2016

Abstract

This study was conducted to assess gamma dose and radioactivity level in some areas in South Kordofan State. Activity level of ²³⁸U, ²³²Th and ⁴⁰K has been investigated by γ -ray spectroscopy equipped with NaI (Tl). The average concentrations were 282.76, 142.79and1081.50 Bqkg⁻¹, respectively. Moreover, the absorbed dose rate in air at height of 1m from the ground has been calculated, using four sets of dose rate conversion factors (DRCFs) and corresponding annual effective dose has been estimated. The average absorbed dose rate values obtained were found to be262.27, 222.39, 233.94 and 261.98nGyh⁻¹, respectively, and annual effective dose were found to be 321.87, 272.92, 287.10 and 321.52µSvy⁻¹, respectively, for DRCFs (SAITO, MCNP, GEANT and UNSEAR). However, the results indicate the radioactivity level in the surveyed area was higher than the global data reported in the UNSCEAR publications for normal background areas.

Keywords: Natural radioactivity, Rock, South Kordofan, Sudan.

Introduction

After the discovery of radioactivity in 1896 by A. H. Becquerel, There for numerous studies have been reported on radioactivity and radiation, this work presented to assess the natural radioactivity content of radionuclide some places in South kordofan State^{1,2}. Natural radionuclides have been in existence in the environment since the formation of earth due to the long half-lives of radionuclides such as ²³⁸U and ²³²Th series and their decay products together with ⁴⁰K. These radionuclides presented from several media, including earth crust and rocks. The most abundant natural radioisotopes in the earth's surface are the ⁴⁰K, ²³²Th and ²³⁸U. From several studies on concentrations of radioisotopes in different types of rocks ^{3,4,5}, it can be realized that, generally, the same type of rock presents a wide range of concentration values. Nevertheless, some trends can be found - for example, felsic igneous rocks have, in general, higher levels than sedimentary rocks. The radioactivity of rocks contributes to the external gamma dose rate that human receive from the environment. Therefore it has been important to evaluate the radioactivity of rocks and understand the dynamic of the radioisotopes in the natural environment, in the industrial processes and in the building practices. Uranium, thorium, and their decay products are radionuclides that represent a potential risk to human health due to the emission of ionizing radiation⁵. Radiation and radioactivity in the environment have natural and man-made sources. Natural

radiation exposure represents the most significant part of the total exposure to radiation in the environment^{6,7}

Materials and Methods

Study area: Area study is located in the South Kordofan State, and is bounded coordinates Latitudes $29^{\circ}.32^{\circ}$ and $31^{\circ}.49 \text{ E}^{\circ}$, and longitudes $11^{\circ}.47^{\circ}$ and $12^{\circ}.08^{\circ}N$

Sample collection and preparation: Twenty two rock samples taken randomly from study area. Each sample was then crushed and ground to fine powder and homogenized by passing through 2mm sieve. 500gm of each sample were sealed in Marinelli beaker for more than 30days before counting by gamma- ray spectroscopy to allow secular equilibrium between ²³⁸U and ²³²Th and their progenies.

Sample measurements: Activity of ²³⁸U, ²³²Th and ⁴⁰K in rock samples has been measured using γ -spectroscopy equipped with NaI (Tl) detector. The samples have been counted for three hours. Sample spectra were analyzed using win TMCA32 software package (provided by IAEA). ²³⁸U has been determined by means of its progeny photo peaks: ²¹⁴Bi (609 Kev) and ²¹⁴Pb (352 Kev) ²³²Th has been analyzed through its progeny photo peak ²¹²Pb (238 Kev). The activity of ⁴⁰K was measured by using 1460 Kev gamma line.

International Research Journal of Environment Sciences _ Vol. 5(5), 48-52, May (2016)

Dose Calculation: In this study the absorbed dose rate D $(nGyh^{-1})$ in air at a height of 1 m above ground surface has been calculated from activity concentration of ²³⁸U, ²³²Th and ⁴⁰K using different dose-rate conversion factors (DRCFS) as shown in (Table -2) ⁸using formula (1).

D (nGyh⁻¹) = activity concentration (Bq kg⁻¹) x DRCFs (1) Where: DRCFs dose-rate conversion factors (nGyh⁻¹/ Bq kg⁻¹) as presented in Table-2 Total radiation risk to an individual organism is measured by annual effective dose (H), thus the estimated absorbed dose rate in air at 1 m height were converted into annual effective dose using the following formula:

H (μ Svy⁻¹) = D (nGyh⁻¹) x 24 hx 365.25d x 0.2 x 0.7 Sv Gy⁻¹ x 10⁻³ (2)

Where: The conversion coefficient from absorbed dose in air to effective dose received by an individual is 0.7 SvGy^{-1} and the outdoor occupancy factor is 0.2^9 .

Table-1 Activity distribution (Bokg ⁻¹) of gamma emitters from ²³⁸ U, ²³² Th and ⁴⁰ K in rock samples						
Sample code	Location	²³⁸ U	²³² Th	⁴⁰ K		
R70	Katla	38.75	37.101	ND		
R71	Walaey	250.09	102.68	1360.05		
R72	Kogoriea	18.64	19.11	90.67		
R73	El karko	55.63	152.53	ND		
R74	EL funda	117.43	134.16	1722.73		
R75	El netil	77.59	92.19	1700.06		
R76	Sallara	102.23	120.29	1866.29		
R77	Hajer el sultan	91.08	99.69	1624.50		
R78	El fous	110.51	111.30	1601.84		
R79	Kakara	223.81	228.60	1586.72		
R80	Kelara	79.29	101.56	1828.51		
R81	Tondiya	99.01	163.02	1881.40		
R82	Um takatik hill	685.45	246.96	1412.94		
R83	Kurun hill	312.25	172.01	ND		
R84	Kurun hill	653.08	218.86	ND		
R85	Beside kurun hill	913.09	326.79	1866.29		
R86	Beside kurun hill	792.05	258.96	1609.39		
R87	Tumluk	119.14	29.23	ND		
R88	Aryab	51.371	38.60	438.24		
R89	Uro hill	551.85	198.62	1095.59		
R90	Tirmi hill	93.18	10.87	521.35		
R91	Uro market hill	785.18	278.44	1586.74		
Mean		282.76	142.79	1081.50		
SD		294.96	90.28	766.05		
Min		18.64	10.87	90.67		
Max		913.09	326.79	1881.40		

ND: Not detectable

used of absorbed dose rate (hGy if 7bq kg)						
Nuclide	SAITO	MCNP	GEANT	UNSCEAR		
²³⁸ U Series						
²¹⁴ Pb	0.05460	0.04150	0.04342			
²¹⁴ Bi	0.40100	0.33849	0.35554			
Total	0.46300	0.38092	0.39996	0.462		
²³² Th Series						
²¹² Pb	0.02770	0.01796	0.01917			
Total	0.60400	0.51678	0.54373	0.604		
⁴⁰ K	0.0417	0.03780	0.03995	0.0417		

Results and Discussion

Table-1 presents the activity distribution of 238 U, 232 Th and 40 K in rock samples from different locations around South Kordofan State. Statistical summary (mean and range) of 238 U, 232 Th and 40 K were found to be 282.76±294.96 (18.64-913.09), 142.79±90.28 (10.87-326.79) and 1081.50±766.05 (90.67-1881.40) Bqkg⁻¹, respectively, as shown in Table-1. In these calculations, standard deviation values indicate that the activity concentration of primordial radionuclides are highly scattered

which indicates that the geological features in the study area are not much differ. The absorbed dose rate average value ranged from 222.27 to 261.98 nGyh⁻¹ and the corresponding annual effective dose average value ranged from 272.92 to321.87µSvy ¹ as shown in table-3. According to UNSCEAR 2000 reported data, the absorbed dose rate from primordial gamma rays in normal conditions are 57 nGyh⁻¹ and annual effective dose is70µSvy⁻¹in study area in South Kordofan State the absorbed dose rate and annual effective dose are higher than normal level this converted to geological features. Upon comparing the values obtained, it is obvious that all the currently available DRCFs which have been used in this study give values with unremarkable differences as one way ANOVA test showed no significant differences (P>0.05), see Table -4. However, the all sets of DRCFs seem as if they are two families see table-3 for SATIO and UNSCEAR formulas on one hand as they display value (262.27, 261.98) nGyh⁻¹with corresponding annual dose of (321.87, 321.52) µSvy-1, whereas Monte Carlo based for formulas namely MCNP and GAINT constitute one family as it is seen from the average value (222.39, 233.94) nGyh⁻¹ with corresponding annual dose of (272.92, 287.10) µSvy⁻¹. It should be noted that in the UNSCEAR reported, dose rate conversion factors are taken from Saito and Jacob (1995), which are 10-20% higher than the more accurate values obtained recently by various Monte Carlo techniques⁸ and that apparent from these results. Estimation of the relative contribution of the ²³⁸U, ²³²Th and ⁴⁰K to the total absorbed dose in air revealed that the major contribution comes from ²³⁸U (49.92%) see Figure-1

 Table-3

 Statistical summary of absorbed dose rate (nGyh⁻¹) from ²³⁸U, ²³²Th and ⁴⁰K and the annual effective dose (µSvy⁻¹) in rock samples

DRCFs	²³⁸ U	²³² Th	⁴⁰ K	nGyh ⁻¹	μSvy ⁻¹
SAITO					
Mean ±SD	130.92 ±136.57	86.25 ± 54.53	45.10± 31.94	262.27±197.13	321.87 ±241.93
Range	8.63 - 422.76	6.56 - 197.38	3.78 - 78.45	23.96 - 697.96	29.40 - 856.57
Contribution %	49.92	32.89	17.20		
MCNP					
Mean ±SD	107.71 ±112.36	73.80 ± 46.65	40.88 ± 28.96	222.39±165.04	272.92 ±202.54
Range	7.10 - 347.81	5.62-168.88	3.43 - 71.12	20.40 - 587.24	25.04 - 720.68
Contribution %	48.43	33.18	18.38		
GEANT					
Mean ±SD	113.09 ±117.97	77.64± 49.09	43.21 ± 30.60	233.94±173.47	287.10 ±212.89
Range	7.46 -365.20	5.91 -177.68	3.62-75.16	21.47 - 617.44	26.35 - 757.75
Contribution %	48.34	33.19	18.47		
UNSCEAR					
Mean ±SD	130.63±136.27	86.25 ± 54.53	45.10 ± 31.94	261.98±196.85	321.52±241.58
Range	8.61- 421.85	6.56 - 197.38	3.78- 78.45	23.94 - 697.05	29.38 - 855.45
Contribution %	49.86	32.92	17.22		

Table-4
One way ANOVA test to examine differences in absorbed dose rate (nGyh ⁻¹) of ²³⁸ U, ²³² Th and ⁴⁰ K in rock samples

Factor DRCFs methods							
		Sum of Squares	df	Mean Square	F	Sig.	
²³⁸ U	Between groups	9453.373	3	3151.124	0.198	0.898	
	Within groups	1338968.860	84	15940.105			
	Total	1348422.233	87				
²³² Th	Between groups	2602.628	3	867.543	0.329	0.804	
	Within groups	221183.379	84	2633.135			
	Total	223786.007	87				
⁴⁰ K	Between groups	264.643	3	88.214	0.092	0.964	
	Within groups	80134.317	84	953.980			
	Total	80398.960	87				

Relative contribution of ²³⁸U, ²³²Th and ⁴⁰K to the total absorbed dose rate in air as calculated using different DRCFs in rock samples

Conclusion

The absorbed dose rate and annual effective in this study area were found to be higher than the worldwide average. There are no significant differences between 238 U, 232 Th and 40 K. The major contribution to the total absorbed dose in air is comes from 238 U.

Acknowledgment

The researcher Acknowledges Sudan Atomic Energy Commission for their help in the analysis of Study samples. The thanks also go to the administration of AlDalang University.

References

- 1. Sam A.K and Holm E. (1995). The natural radioactivity in phosphate deposits from Sudan. *The Science of the Total Environment*. 162(2), 173-178.
- 2. Sam A.K., Ahamed M.M.O., El Khangi F.A., El Nigumi Y.O. and Holm E. (1999). Radiological and chemical assessment of Uro and Kurun rock phosphates, The natural radioactivity in Phosphat, *Journal of Environmental Radioactivity* 42(1), 65-75.
- **3.** Dickson B.L and Scott K.M. (1997). Interpretation of aerial gamma-ray surveys adding the geochemical factors. *Journal of Australian Geology and Geophysics*, 17(2), 187-200.

- 4. Degerlier M., Karahan G. and Ozger G. (2008). Radioactivity concentrations and dose assessment for soil samples around Adana, Turkey. *Journal of Environmental Radioactivity*, 99(7), 1018-1025.
- 5. El Aassy Ibrahim M., El Galy Mohamed M., Nada, Afaf A., El Feky, Mohamed G., AbdEl Maksoud Thanaa M., Talaat Shadia M. and Ibrahim Eman M. (2011). Effect of alteration processes on the distribution of radionuclides in uraniferous sedimentary rock and their environmental impact, south western Sinai, *Egypt., J. Radioanal*, 289(1), 173-184,
- 6. Tso M.Y and Leung J.K. (2000). Population Dose Due to Natural Radiations in Hong Kong. *Health Physics*, 78(5), 555-558.
- 7. UNSCEAR. (2008). United Nations Scientific Committee on the Effects of Atomic Radiation: Sources, effects and risks of ionizing radiation. Report to General Assembly, with Scientific Annexes. New York, United Nations.
- **8.** Kohshi C., Takao I and Hideo S. (2001). Terrestrial gamma radiation in Koshipre fecture, Japan. *J. of health Science*, 47(4) 362-372.
- **9.** UNSCEAR (2000). United Nations Scientific Committee on the Effects of Atomic Radiation: Sources, effects and risks of ionizing radiation. Report to General Assembly, with Scientific Annexes .New York, United Nations.