International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Earthworms of Doodhpathri (Budgam), Jammu and Kashmir, India

Author Affiliations

  • 1PG Department of Environmental Sciences, S.P College, Kashmir (J&K), India-190001
  • 2PG Department of Environmental Sciences, S.P College, Kashmir (J&K), India-190001

Int. Res. J. Environment Sci., Volume 5, Issue (12), Pages 33-39, December,22 (2016)


The study reports the diversity and seasonal population dynamics of earthworms of Doodhpathri (Budgam), based on the data collected from five different sites. A total of three earthworm species-Aporrrectodearosearosea, Aporrrectodeacaliginosa trapezoids and Octalasioncyaneum belong to family lumbricidae were recorded. Out of the three species O. cyaneum exhibited restricted distribution whereas A. r. rosea and A. C. trapezoides were present at majority of the sites. The density and biomass exhibited significant variation (F4 = 6.66; 37.77, P < 0.05) within the sites and among (F3 = 4.77; 15.08, P < 0.05) the seasons with higher values recorded during autumn and spring. Diversity indices- Margalef species richness (0.150-0.679), Simpson’s index (0.370-0.600), Shannon diversity index (0.556-1.102) and evenness (0.872-1.033) also exhibited varied values among the sites with maximum value at site-III. Organic nitrogen showed significant variation within the sites (F4 = 5.43, P < 0.05) and among the seasons (F3 = 6.27, P < 0.05), within the sites in moisture (F4 = 3.39, P < 0.05) and electrical conductivity (F4 = 17.89, P < 0.05) whereas among the seasons in temperature (F3 = 22.88, P < 0.05) and organic carbon (F3 = 10.12, P < 0.05). Organic carbon, organic nitrogen along with moisture favors the diversity of earthworms whereas the temperature affects the overall population dynamics.


  1. Najar I.A. and Khan A.B. (2014)., Factors Affecting Distribution of Earthworms in Kashmir Valley: A Multivariate Statistical Approach., Proc. Zool. Soc., 67(2), 126-135.
  2. Chaudhuri P.S and Dey A. (2013)., Earthworm Communities in the Pineapple (Ananus comosus) and Mixed Fruit Plantations of West Tripura, India., Proc. Zool. Soc.,66(2), 105-118. doi: 10.1007/s12595-012-0047-.
  3. Smith R.G., McSwiney C.P., Grandy A.S., Suwanwaree P., Snider R.M. and Robertson G.P. (2008)., Diversity and abundance of earthworms across an agricultural land-use intensity gradient., Soil. Till. Res., 100, 83-88.
  4. Ernst G, Muller A, Gohler H. and Emmerling C. (2008)., C and N turnover of fermented residues from biogas plants in soil in the presence of three different earthworm species (Lumbricus terrestris, Aporrectodea longa, Aporrectodea caliginosa)., Soil. Biol. Biochem., 40, 1413-1420.
  5. Jouquet P., Plumere T., Thu T.D., Rumpel C., Duc T.T. and Orange D. (2010)., The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earthworms., Appl. Soil. Ecol., 46, 125-133.
  6. Ll H, Li X, Dou Z, Zhang J. and Wang C. (2012)., Earthworm (Aporrectodea trapezoides)- mycorrhiza (Glomus intraradices) interaction and nitrogen and phosphorus uptake by maize., Biol. Fert. Soils., 48, 75-85.
  7. Najar I.A. and Khan A.B. (2011)., Earthworm communities of Kashmir Valley, India., Trop. Ecol., 52(2), 151-162.
  8. Jongmans A.G., Pulleman M.M., Balabane M., Oort F. and Marinissen J.C.Y. (2003)., Soil structure and characteristics of organic matter in two orchards differing in earthworm activity., Appl. Soil. Ecol., 24, 219-232.
  9. Speratti A.B., Whalen J.K. and Rochette P. (2007)., Earthworm influence on carbon dioxide and nitrous oxide fluxes from an unfertilized corn agroecosystem., Biol. Fert. Soils., 44, 405-409.
  10. Najar I.A. and Khan A.B. (2010)., Vermicomposting of Azolla pinnata by using earthworm Eisenia fetida., The Bioscan., 5(2), 239-241.
  11. Amador J.A. and Gorres J.H. (2005)., Role of the anecic earthworm Lumbricus terrestris L. in the distribution of plant residue nitrogen in a corn (Zea mays)-soil system., Appl. Soil. Ecol., 30, 203-214.
  12. Tiunov A.V., Bonkowski M., Alphei J. and Scheu S. (2001)., Microflora, Protozoa and Nematoda in Lumbricus terrestris burrow walls: a laboratory experiment., Pedobiologia, 45, 46-60.
  13. Dominguez J., Aira M. and Gomez-Brandon M. (2009)., The role of earthworms on the decomposition of organic matter and nutrient cycling., Ecosistemas., 18(2), 20-31.
  14. Najar I.A. and Khan A.B. (2013)., Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida., Environ. Sci. Pollut. Res., 20:6406–6417. doi:10.1007/s11356-013-1687-9.
  15. Kizilkaya R., Karaca A., Turgay O.C. and Cetin S.C. (2011)., Earthworm interactions with soil enzymes., In Biology of earthworms, ed. Karaca A. Berlin: Springer.
  16. Najar I.A. and Khan A.B. (2013)., Effect of vermicompost on growth and productivity of tomato (Lycopersicon esculentum) under field conditions., Acta. Biol. Malaysiana., 2(1), 12-21.
  17. Najar I.A., Khan A.B. and Hai A. (2015)., Effect of macrophyte vermicompost on growth and productivity of brinjal (Solanum melongena) under field conditions., Int. J.Recy.Org. Waste Agr., 4(2), 73-83. dOI: 10.1007/s40093-015-0087-1.
  18. Edwards C.A. and Bohlen P.J. (1996)., Biology and ecology of earthworms., London: Chapman and Hall.
  19. Eijsackers H. (2011)., Earthworms as colonizers of natural and cultivated soil environments., Appl. Soil. Ecol., 50, 1-13.
  20. Haynes R.J., Dominy, C.S. and Graham M.H. (2003)., Effect of agricultural land use on soil organic matter and the composition of earthworm communities in KwaZulu-Natal, South Africa., Agr. Ecosyst. Environ., 95, 453-464.
  21. Ghafoor A., Hassan M. and Alvi Z.H. (2008)., Biodiversity of earthworm species from various habitats of district Narowal, Pakistan., Int. J. Agr. Biol., 10, 681-684.
  22. Karaca A, Kizilkaya R., Turgay O.C. and Cetin S.C. (2010)., Effects of earthworms on the availability and removal of heavy metals in soils., In Soil heavy metals, soil biology series 19, ed. Sherameti I, Varma A, 369-388. Berlin: Springer.
  23. Whalen J.K. (2004)., Spatial and temporal distribution of earthworm patches in corn field, hayfield and forest systems of southwestern Quebec, Canada., Appl. Soil. Ecol., 27, 143-151.
  24. Lee K.E. (1985)., Earthworms, their ecology and relationships with soils and land use., New York: Academic Press.
  25. Chan K.Y. and Barchia I. (2007)., Soil compaction controls the abundance, biomass and distribution of earthworms in a single dairy farm in south-eastern Australia., Soil. Till. Res., 94, 75-82.
  26. Chaudhuri P.S. and Nath S. (2011)., Community structure of earthworms under rubber plantations and mixed forests in Tripura, India., J. Environ. Biol., 32, 537-541.
  27. Joschko M., Fox C.A., Lentzsch P., Kiesel J., HieroldW., Kruck S. and Timmer J. (2006)., Spatial analysis of earthworm biodiversity at the regional scale., Agr. Ecosyst. Environ., 112, 367-380.
  28. Edwards C.A. (2004)., Earthworm Ecology., II ed. Boca Raton: CRC Press.
  29. Zorn M.I., Gestel C.A.M.V. and Eijsackers H. (2005)., Speciesspecific earthworm population responses in relation to flooding dynamics in a Dutch floodplain soil., Pedobiologia., 49, 189-198.
  30. Gupta P.K. (1999)., Soil, plant, water and fertilizer analysis., Bikaner: Agro Botanica.
  31. Jackson M.L. (1973)., Soil chemical analysis., New Delhi: Prentice Hall of India Pvt. Ltd.
  32. Walkley A., Black I.A. (1934)., An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method., Soil Sci., 34, 29-38.
  33. Magurran A.E. (2013)., Measuring biological diversity., Oxford: Blackwell Publishing Ltd.
  34. Paliwal R. and Julka J.M. (2005)., Checklist of earthworms of Western Himalaya, India., Zoos. Print. J., 20, 1972-1976.
  35. Tischer S. (2008)., Lumbricidae communities in soil monitoring sites differently managed and polluted with heavy metals., Polish.J. Ecol., 56, 635-646.
  36. Mısırlıoğlu M. (2004)., Earthworm records from different parts of Anatolia., Megadrilogica., 10, 1-4.
  37. Sims R.W. and Gerard B.M. (1999)., Earthworms., Syn. Br. Fauna No.31. Linnean Society of London, London.
  38. Najar I.A. and Khan A.B. (2011b)., New record of an earthworm Octolasioncyaneum (Savigny, 1826) from Srinagar, Kashmir (J&K), India., Ecol. Environ. Conserv., 17(3), 1-3.
  39. Singh J. (1997)., Habitat preferences of selected Indian earthworms species and their efficiency in reduction of organic materials., Soil. Biol. Biochem., 29, 585-588.
  40. Mathieu J., Barot S., BlouinM., Caro G., Decaens T., Dubs F., Dupont L., Jouquent P. and Nai P. (2010)., Habitat quality, conspecific density and habitat pre-use affect the dispersal behaviour of two earthworm species, Aporrectodea icterica and Dendrobaena veneta, in a mesocosm experiment., Soil. Biol. Biochem. 42, 203-209.
  41. Lowe C.N. and Butt K.R. (2005)., Culture techniques for soil dwelling earthworms: a review., Pedobiologia., 49, 401-413.
  42. Callaham J.M.A. and Hendrix P.F. (1997)., Relative abundance and seasonal activity of earthworms (Lumbricidae and Megascolecidae) as determined by hand-sorting and formalin extraction in forest soils on the southern Appalachian Piedmont., Soil. Biol. Biochem., 29, 317-321.
  43. Timmerman A., Bos D., Ouwehand J., Goede De. R.G.M. (2006)., Long-term effects of fertilisation regime on earthworm abundance in a semi-natural grassland area., Pedobiologia., 50, 427-432.
  44. Decaens T., Bureau F. and Margerie P. (2003)., Earthworm communities in a wet agricultural landscape of the Seine Valley (Upper Normandy, France)., Pedobiologia., 47, 479-489.
  45. Chaudhuri P.S. and Bhattacharjee G. (1999)., Earthworm resources of Tripura., Pro.Natl. Acad. Sci. India., 69, 159-170.
  46. Schmidt O. and Curry J.P. (2001)., Population dynamics of earthworms (Lumbricidae) and their role in nitrogen turnover in wheat and wheatclover cropping systems., Pedobiologia., 45, 174-187.
  47. Najar I.A. and Khan A.B. (2012)., Vermicomposting of fresh water weeds (macrophytes by Eisenia fetida (Savigny, 1826), Aporrectodea caliginosa trapezoides (Duges, 1828) and Aporrectodea rosea rosea (Savigny, 1826)., Dynam. Soil. Dynam. Plant., 6 (S1), 73-77.
  48. Curry J.P. (2004)., Factors affecting the abundance of earthworms in soils., In Earthworm ecology, 3rd ed, ed. Edwards CA. Boca Raton: St. Lucie Press.
  49. Tripathi G. and Bhardwaj P. (2004)., Earthworm diversity and habitat preferences in arid regions of Rajasthan., Zoo’s Print J., 19, 1515-1519.
  50. Sinha B., Bhadauria T., Ramakrishnan P.S., Saxena K.G. and Maikhuri R.K. (2003)., Impact of landscape modification on earthworm diversity and abundance in the Hariyali sacred landscape, Garhwal Himalaya., Pedobiologia., 47, 357-370.
  51. Najar I.A. and Khan A.B. (2011)., New record of the earthworm Eisenia fetida (Savigny, 1826) from Kashmir Valley., Jammu and Kashmir, India. Bioscan., 6 (1), 143-145.