International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Cadmium uptake and Phytoremediation potential of three Aquatic Macrophytes of Meghalaya, India

Author Affiliations

  • 1Department of Environmental Studies, North-Eastern Hill University, Shillong-793022, INDIA

Int. Res. J. Environment Sci., Volume 3, Issue (6), Pages 25-32, June,22 (2014)

Abstract

Laboratory experiments were performed to evaluate the Cd uptake capacity by three aquatic macrophytes (Scripus mucronatus, Rotala rotundifolia and Myriophyllum intermedium). The selected macrophytes were transferred to the laboratory containing nutrient solution and working Cd standard solutions of different concentrations (1.0, 2.0, 4.0, 8.0 and 16 mg L-1 and harvested at regular time interval of 2, 4, 6, 8 and 10 days. The Cd uptake by these macrophytes showed a linear relationship for S. mucronatus and for R. rotundifolia with the exposure time period (2–10 d). Cd accumulation in the plant parts was higher in the roots for S. mucronatus but reverse in the case of R. rotundifolia and M. intermedium. The maximum bioconcentration factor (BCF) values were found at the 8th day in all the three aquatic macrophytes and translocation factor (TF) was at the 2nd day for S. mucronatus and R. rotundifolia and at the 10th day for M. intermedium respectively. The experimental results demonstrated that these three aquatic macrophytes have a phytoremediation potential for removing Cd from Cd-contaminated water.

References

  1. Kaplan I.R., Sulphur cycle, In R. W. Fairbridge (ed), The Encyclopedia of Geochemistry and Environmental Sciences, 1148-1152 (1972)
  2. Rebhun M. and Galil N., Wastewater treatment technologies. In: L. Zirm and J. Mayer (eds), The Management of Hazardous Substances in the Environment, 85–102 (1990)
  3. Weiss J., Hondzom M., Biesbor D. and Semmen M., Laboratory study of heavy metal phytoremediation by three wetland macrophytes, Int. J. Phytorem., 245-259 (2006)
  4. Maine M.A., Duarte M.V. and Sune N.L., Cadmium uptake by Pistia stratiotes, Water Res., 35(11), 2629-2634 (2001)
  5. Hoagland D.R. and Arnon D.I., The water-culture method for growing plants without soil, Calif. Agric. Exp. STN., 3471-32 (1950)
  6. Kara Y. and Zeytunluoglu A., Bioaccumulation of Toxic Metals (Cd and Cu) by Groenlandia densa (L.) Fourr, Bull. Environ. Contam. Toxicol., 79, 609–612 (2007)
  7. Zayed A., Gowthaman S. and Terry N., Phytoaccumulation of trace elements by wetlands. I. Duckweed, J Environ Qual., 27, 339–344 (1998)
  8. Deng H., Ye Z.H. and Wong M.H., Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China, Environ. Pollut., 132, 29-40 (2004)
  9. Fritioff A. and Greger M., Fate of cadmium in Elodea Canadensis, Chemosphere., 67365–375 (2007)
  10. Siedlecka A. and Krupa Z., Cd/Fe interaction in higher plants – its consequences for the photosynthetic apparatus, Photosynthetica., 36, 321-331 (1997)
  11. Sersen F., Clik G., Havranek E. and Sykorova M., Bio-remediation by natural zeolite in plants cultivated in a heavy metalcontaminated medium, Fresenius Environ. Bull., 14, 13-17 (2005)
  12. Sasmaz A., Obek E. and Hasar H., The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent, Ecol. Engineer., 33(3–4), 278–284 (2008)
  13. Hussain K., Abdussalam A. K., Chandra R. P. and Salim N., Heavy metal accumulation potential and medicinal property of Bacopa monnieri- a paradox, J. Stress Physiol Biochem.,7(4), 39-50 (2011)
  14. 14.Crowder A. and St-Cyr L., Iron oxide plaques on wetland roots. Trends in Soil Sci., 315-329 (1991)
  15. Xie Y. and Yu D., The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes), Aquat. Bot., 75, 311–321 (2003)
  16. Stoltz E. and Greger M., Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environ. Exp. Bot., 47(3), 271–280 (2002)
  17. Ali N.A., Pilar M. B. and Ater M., Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper and zinc, Aquat. Bot., 80, 163–176 (2004)
  18. Phetsombat S., Kruatrachue M., Pokethitiyook P. and Upatham S., Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata, J. Environ. Biol, 27(4), 645-652 (2006)
  19. Hadad H.R., Mufarrege M.M., Pinciroli M., Di Luca G.A. and Maine M.A., Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland Arch Environ Contam Toxicol., 58(3), 666-75 (2010)
  20. Dunbabin J.S. and Bowmer K.H., Potential use of constructed wetlands for treatment of industrial waste waters containing metals Sci. Total Environ., 151–168(1992)
  21. 21.Zayed A, Lytle C.M., Qian J.H. and Terry N., Chromium accumulation, translocation and chemical speciation in vegetable crops, Planta., 206(2), 293–299 (1998)
  22. Abhilash P.C., Pandey V.C., Srivastava P., Rakesh P.S., Chandran S., Singh N. and Thomas A.P., Phytofiltration of cadmium from water by Limnocharis flava(L.) Buchenau grown in free-floating culture system, J. Hazard. Mater., 170(2–3)791–797 (2009)
  23. Fritioff A., Kautsky L. and Greger M., Influence of temperature and salinity on heavy metal uptake by submersed plants, Environ. Pollut., 133, 265-274 (2005)
  24. Yanqun Z., Yuan L., Jianjun C., Haiyan C., Li Q. and Schvartz C., Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China, Environ. Int., 31, 755-762 (2005)
  25. Zhao F.J., Hamon R.E., Lombi E., McLaughlin M.J. and McGrath S. P., Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens, J. Exp. Bot., 53, 535-543 (2002)
  26. Lasat M.M., Pence N.S., Garvin D.F., Ebbs S.D. and Kochian L.V., Molecular physiology of zinc transport in zinc hyperaccumulator Thlaspi caerulescens, J. Exp. Bot., 51, 71-79 (2000)
  27. Yoon J., Cao X, Zhou Q. and Ma L.Q., Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site, Sci. Total. Environ., 368, 456-464 (2006)
  28. Macfarlane G.R. and Burchett M.D., Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh, Aquat. Bot., 68, 45-69 (2000)
  29. Demirezen D. and Aksoy A., Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey),Chemosphere., 56, 685–696 (2004)
  30. Qian J.H., Zayed A., Zhu Y.L., Yu M. and Terry N., Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species, Journal of Environ. Qual., 28, 1448–1455 (1999)