International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Study of the adsorption of glycine by two local clays of Congo Brazzaville

Author Affiliations

  • 1Laboratoire de Chimie minerale et Appliquee, Faculte des sciences et Techniques, University Marien Ngouabi, B.P. 69, Brazzaville, Congo
  • 2Laboratoire de Chimie minerale et Appliquee, Faculte des sciences et Techniques, University Marien Ngouabi, B.P. 69, Brazzaville, Congo and Ecole Normale Superieure, University Marien Ngouabi, B.P. 69, Brazzaville, Congo
  • 3Laboratoire de Chimie minerale et Appliquee, Faculte des sciences et Techniques, University Marien Ngouabi, B.P. 69, Brazzaville, Congo
  • 4Laboratoire de Chimie minerale et Appliquee, Faculte des sciences et Techniques, University Marien Ngouabi, B.P. 69, Brazzaville, Congo
  • 5Laboratoire de Chimie minerale et Appliquee, Faculte des sciences et Techniques, University Marien Ngouabi, B.P. 69, Brazzaville, Congo and Ecole Normale Superieure, University Marien Ngouabi, B.P. 69, Brazzaville, Congo

Int. Res. J. Environment Sci., Volume 10, Issue (2), Pages 52-63, April,22 (2021)

Abstract

In this work, we are studying the interaction of two Congolese clays with glycine, the clays soils collected in the localities of Missafou and Mouyondzi. The two adsorbents have been characterized beforehand. Mineralogical analysis is determined using different techniques (DRX, IR, ATD, ATG, DTG). Among the physicochemical properties, the chemical composition is obtained by ICP-AES, the CEC is evaluated by the Metson method. The surface properties are derived from the nitrogen adsorption / desorption isotherm on the MISA-B and MOU samples. The geotechnical properties (particle size and Atterberg limits) were measured. The results of the characterization showed that Talc is the predominant species in Missafou clay. Batch mode adsorption tests have shown us that the adsorption capacity of glycine on Mouyondzi clay is better. Langmuir\'s model better describes these adsorption isotherms.

References

  1. Konta, J. (1995)., Clay and man: Clay raw materials in the service of man., Applied Clay Science, 10(4), 275-335.
  2. Bouras, O. (2003)., Proprietes adsorbantes dargiles pontees organophiles: synthese et caracterisation., These de doctorat, Universite deLimoges France, 1-162.
  3. Errais, E. (2011)., Reactivite de surface dargiles naturelles., etude de ladsorption de colorants anioniques. These de doctorat, Universite de strasbourg, 1-210.
  4. Quiquampoix, H., Servagent-Noinville, S. and Baron, M-H. (2002)., Enzyme Adsorption on Soil Mineral Surfaces and Consequences for the Catalytic Activity., Marcel Dekker, Inc. 285-306. https://doi.org/10.1201/9780203904039.ch11.
  5. Stotzky, G. and Pramer, D. (1972)., Activity, ecology, and population dynamics of microorganisms in soil., CRC Critical Reviews in Microbiology, 2(1), 59-137. https://doi.org/10.3109/1040841720910838.
  6. Kitadai, N., Oonishi H., Umemoto K., Usui, K.F. and Nakashima, S. (2017)., Polymerisation de la glycine sur les mineraux oxides., Orig life Evol Biosph, 47(2), 123-143, https://doi.org/ 10. 1007/s11084-016-9516-z.
  7. Diamouangana Mpissi, Z.F., Moutou, J.M., Matini, L., Mongo Oladzon, M.F. and Kouhounina Banzouzi, L. M. (2019)., Synthesis of an inorgano-clay complex from loukolela clay and application in the adsorption of humic matter., Int. Res. J. environment Sci, 8(3), 12-20.
  8. Moutou, J.M., Bibila Mafoumba, C., Matini, L., Ngoro Elenga, F. and Kouhounina, L. (2018)., Characterization and evaluation of the adsorption capacity of dichromate ions by a clay soil of impfondo., Res. J. Chem. Sci., 8(4), 1-14.
  9. Moutou, J.M., Mbedi, R., Elimbi, A., Njopwouo, D., Yvon, J., Barres, O. and Ntekela, H.R. (2012)., Mineralogy and Thermal Behaviour of the Kaolinitic Clay of Loutete (Congo-Brazzaville)., Research Journal of Environmental and Earth Sciences, 4(3), 316-324
  10. Moutou J. M., Foutou P. M., Matini L., Banzouzi Samba V., Diamouangana Z. F. and Mpissi, Loubaki R. (2018)., Characterization and Evaluation of the Potential Uses of Mouyondzi Clay., Journal of Minerals and Materials Characterization and Engineering, 6, 119-138, https://doi.org/10.4236/jmmce.2018.61010.
  11. QGIS (2020)., Version AGIS3., 16. [logiciel] systeme dinformation geographique. Disponible sur https://www.agis.org/fr/site/forusers/download.html.
  12. Rodríguez-Carvajal, J. (2001)., Recent Developments of the Program Full Prof, in commission on Powerder Diffraction (IUCr)., 26, 1219.
  13. NF P 94-051 NF P 94-052 (1982)., European Committee for Standardization, EN 100: Ceramic Tiles-Determination of modulus of rupture., edited by Afnor Paris France.
  14. AFNOR NF X 31-107 (1984)., Granulats Dans: Recueil des normes francaises du batiment et Constituants du beton., Tome 3, 2nd Edn., pp: 78-80.
  15. Carignan J., Hild P., Mevelle G., Morel J., Yeghicheyan D. (2001)., Routine analyses of Trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH., Geostandards Newsletter, 25(23), 187-198.
  16. Segalen, P., (1971)., La determination du Fer libre dans les sols sesquioxydes., Cah. O.R.S.T.O.M., ser. Pedol., IX(1).
  17. Jenroy, E., Guillet, B., Delcroix, P., & Janot, C. (1983)., Les formes du fer dans les sols: Confrontation des methodes chimiques avec la spectrometrie Mossbauer. Bulletin de l, Science du sol, (3-4), 185-194.
  18. ISO, N. (1995)., 10694: Determination of organic and total carbon after dry combustion (elementary analysis).,
  19. Rouquerol, F., Luciani, L., Llewellyn, P., Denoyel R. and Rouauerol, J (2003)., Texture des materiaux pulverulents ou poreux., Editions Techniques de L
  20. Boch, P. (2001)., Frittage et microstructures des ceramiques: Materiaux et processus ceramiques., In: Par Boch P. (Ed.), Paris, Hermes Science Publications, 73-112.
  21. Afnor NFX31-130 (1999)., Soil-Quality-Chemical Methods-Determination of Cationic Exchange Capacity (CEC) and extractible Cations., Association Francaise de Normalisation.
  22. Caillere, S., & Henin, S. (1964)., Mineralogie des argiles., Soil Science, 98(3), 208.
  23. Javey, C. (1972)., Principales matieres premieres utilisees dans l,
  24. Nkoumbou, C. Villiera, F., Njopwouo, D., Ngoune, G.Y, Barres, O., Pelletier, M., Razafitianamaharavo, A. and Yvon, J. (2008)., Physicochemical properties of talc ore from three deposits of Lama Pougue area (Yaounde Pan-African Belt, Cameroun), in relation to industrial uses., Applied clay science, 41(3-4) 113-132.
  25. Bertaux, J., Frohlich, F. and Ildefonse, P. (1998)., Multicomponment Analysis of FT IR spectra: quantification of amorphe and crystallized mineral phase in synthetique and natural sediments., Journal of sedimentary Research, 68(3), 440-447
  26. Hmeid, A.H., Akodad, M., Aalaoul, M. and Baghour, M. (2020)., Clay mineralogy, chemical and geotechnical characterization of bentonite from Beni Bou Ifrour Massif (the Eastern Rif, Morocco)., Geological Society, London, February, https://doi.org/10.1144/SP502-2019-25.
  27. Rozenson, I. and Heller-kallai, L. (1975)., Reduction and oxidation of Fe3+ in dioctahedral smectites-III*.Oxidation of octahedral iron in montmorillonite., Clays and clay Minerals, 26(2), 88-92.
  28. Yvon, J., Baudracco, J., Cases, J.M. and Weiss, J. (1990)., Elements de mineralogie quantitative en microanalyse des argiles., In: Deccareau, A., Ed., Materiaux Argileux, Structures, Proprietes et Applications, SFMC-GFA, Paris, Partie IV, Chap. 3, 473-489.
  29. Fayza G.B. (2007)., Materiaux de mullite a microstructure organisee composes dassemblages muscovite -kaolinite., These de doctorat, Universite de Limoges.1-243
  30. Grosjean, P. (1984)., Contribution a la monocuisson rapide de faďence au talc., Etude de pates et emaux. Application a l
  31. Jouenne C.A. (1990)., Traite de ceramiques et materiaux mineraux., Editions Septima, Paris. pp 1-657. ISBN: 5552904845010.
  32. Casagrande, A. (1948)., Classification and Identification of Soils., Transactions of the American Society of Civil Engineers, 113(1), 901-930.
  33. Fiori C., Fabbri B., Donati, G. and Venturi I. (1989)., Mineralogical Composition of the Clay Bodies Used in the Italian Tile Industry., Applied Clay Science, 4(5-6), 461-473. https://doi.org/10.1016/0169-1317(89)90023-9.
  34. Skempton, A.W. (1953)., The colloidal activity of clays. In: Proceedings of the third international., Conference on soil mechanics and foundation engineering. Zurich, Switzerland, August, pp 57-61.
  35. Brunauer, S. (1943)., The Absorption of the Gases and Vapors L. physical Adsorption., Princeton University Press, Universite du Michigan, volume 1, 511p.
  36. Mourad F. (2012)., Co-adsorption des metaux lourds sur la bentonite modifiee en presence de floculant mineral et biologique., These de Magister, Universite de Tizi-ouzou,
  37. Van der Weerd J., Heeren R.M.A. and Boon J.J. (2004)., Preparation methods and accessories for the infrared spectroscopic analysis of multi-layer paint films., Studies in Conservation, 49(3), 193-210, https://doi.org/10.171179/ sic.20004.49.3.193.
  38. Ayele J., Mahi, A. and Mazet M. (1990)., Influence du dodecyl sulfate de sodium sur ladsorption des acides humiques sur charbon actif en poudre., Revue des sciences de l
  39. Nouzha, B. (2007)., Elimination du 2-Mercaptonbenzo thiazole par voie photochimique et par adsorption sur la bentonite et le charbon actif en poudre., Magister en chimie, Universite Mentouri de Constantine, 1-205
  40. Limousin, G., Gaudet, J.P., Charlet, L., Szenknet, S ., Barthese, V. and Krimissa, M. (2007)., Sorption isotherms : a review on physical bases modeling and measurement., Applied geochemistry, 22(2), 294 -275, https://doi.org/10.1016/j.apgeochem.2006.09.010
  41. Zahaf, F. (2017)., Etude Structurale des argiles modifiees Appliquees a ladsorption des pollutants., These de doctorat, Universite mustapha stambouli de mascara, p.243.