6th International Young Scientist Congress (IYSC-2020) and Workshop on Intellectual Property Rights. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Mitochondrial CR and nuclear ITS2 regions analysis in flesh flies

Author Affiliations

  • 1Govt. Degree College, Kaushambi, Uttar Pradesh, India

Int. Res. J. Biological Sci., Volume 8, Issue (4), Pages 16-19, April,10 (2019)


Flies (flesh flies) of the family Sarcophagidae are found all over the world and are considered to be of great forensic and medical importance. These are difficult to identify by morphological characters, therefore, molecular marker technology based methods prove to be more effective and are used as an alternative method over morphology based identification. The use of molecular marker technology for exploring genetic relationship/identity or for forensic studies is most effective and precise method also. In this paper an attempt has been made to analyse mitochondrial CR and nuclear ITS2 region among flesh flies to draw genetic closeness.


  1. Zumpt F. (1965)., Myiasis in man and animals in the old world., Butterworth, London.
  2. Greenberg B. (1973)., Flies and Diseases., Biology and Disease Transmission, Princeton University Press, New Jersey, 2.
  3. Cherix D., Wyss C. and Pape T. (2012)., Occurrence of flesh flies (Diptera: Sarcophagidae) on human cadavers in Switzerland, and their importance as forensic indicators., Forensic Sci. Int., 220, 158-163.
  4. Catts E.P. and Goff M.L. (1992)., Forensic entomology in criminal investigations., Annual review of Entomology, 37(1), 253-272.
  5. Wells J.D., Pape T. and Sperling F.A.H. (2001)., DNA based identification and molecular systematics of forensically important Sarcophagidae (Diptera)., J. Forensic Sci., 46, 1098-1102.
  6. Amendt J., Krettek R. and Zehner R. (2004)., Forensic Entomology., Naturwissenschaften, 91(2), 51-65.
  7. Napoleão K.S., Mello-Patiu C.A., Oliveira-Costa J., Takiya D.M., Silva R. and Moura-Neto R.S. (2016)., DNA-based identification of forensically important species of Sarcophagidae (Insecta: Diptera) from Rio de Janeiro, Brazil., Genet Mol Res, 15, 1-7.
  8. Bajpai N. and Tewari R.R. (2010)., Mitochondrial DNA sequence based phylogenetic relationship among flesh flies of the genus Sarcophaga (Sarcophagidae: Diptera)., J. Genet., 89, 51-54.
  9. Sharma M., Singh D. and Sharma A.K. (2014)., Identification of three forensically important Indian species of flesh flies (Diptera: Sarcophagidae) based on cytochrome oxidase I gene., Indian J. Forensic Med. and Toxicol, 2, 814-818.
  10. Ren L., Shang Y., Chen W., Meng F., Cai J., Zhu G., Chen L., Wang Y., Deng J. and Guo Y. (2018)., A brief review of forensically important flesh flies (Diptera: Sarcophagidae)., Forensic Science Research, 3, 16-26.
  11. Bajpai N. (2016)., Mitochondrial DNA based studies in Sarcophagid flies from India., Research Journal of Recent Sciences, 5, 17-20.
  12. Maniatis T., Fritsch E.F. and Sambrook J. (1982)., Molecular Cloning, A Laboratory Manual., Coldspring Harbour Laboratory, 458.
  13. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. and Higgins D.G. (1997)., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools., Nucleic acids research, 25(24), 4876-4882.
  14. Tamura K., Dudley J., Nei M. and Kumar S. (2007)., MEGA4: Molecular Evolutionary Genetic Analysis (MEGA) software version 4.0., Mol. Biol. Evol., 24(8), 1596-1599.
  15. Song Z.K., Wang X.Z. and Liang G.Q. (2008)., Molecular evolution and phylogenetic utility of the Internal Transcribed Spacer 2 (ITS2) in Calyptratae (Diptera: Brachycera)., J. Mol. Evol., 67, 448-464.
  16. Song Z.K., Wang X.Z. and Liang G.Q. (2008)., Phylogenetic relationships among 15 sarcophagid fly species (Diptera: Sarcophagidae) based on partial sequence of mitochondrial cytochrome b and cytochrome oxidase subunit I gene., Acta Entomologica Sinica, 51, 298-306.
  17. Zhang D.X. and Hewitt G.M. (1997)., Insect mitochondrial control region: A review of its structure, evolution and usefullness in evolutionary studies., Biochem. Syst. Ecol., 25, 99-120.
  18. Song Z.K., Wang X.Z. and Liang G.Q. (2008)., Species identification of some common necrophagous flies in Guangdon province, southern China based on the rDNA internal transcribed spacer 2 (ITS2)., Forensic Sci. Int., 175, 17-22.
  19. Keller I., Bensasson D. and Nichols R.A. (2007)., Transition-Transversion bias is not universal: A counter example from grasshopper pseudogene., PloS Genetics, 3, 185-191.
  20. Schlötterer C., Hauser M.T., von Haeseler A. and Tautz D. (1994)., Comparative evolutionary analysis of rDNA ITS regions in Drosophila., Molecular biology and evolution, 11(3), 513-522.
  21. Agrawal U.R., Bajpai N., Tewari R.R. and Kurahashi H. (2010)., Cytogenetics of flesh fliesof the genus Boettcherisca (Sarcophagidae: Diptera)., Cytologia, 75(2), 149-155.
  22. Parise-Maltempi P.P. and Avancini R.M.P. (2000)., Cytogenetic of the neotropical flesh flies Pattonella intermutans (Diptera: Sarcophagidae)., Genet. Mol. Biol., 23(3), 563-567.
  23. Wallman J.F. and Donnellan S.C. (2001)., The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in South Eastern Australia., Forensic Sci. Int., 120, 60-67.
  24. Hall M.J.R., Edge W., Testa J.M., Adams Z.J.O. and Ready P.D. (2001)., Old World screwworm fly, Chrysomya bezziana, occurs as two geographical races., Medical and Veterinary Entomology, 15(4), 393-402.
  25. Zehner R., Amendt J., Schütt S., Sauer J., Krettek R. and Povolný D. (2004)., Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae)., International journal of legal medicine, 118(4), 245-247.
  26. Han H.Y. and Ro K.E. (2009)., Molecular phylogeny of the family Tephritidae (Insecta: Diptera): New insight from combined analysis of the mitochondrial 12S, 16S and COII genes., Mol. Cell, 27, 55-66.