6th International Young Scientist Congress (IYSC-2020) and Workshop on Intellectual Property Rights. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Phytochemistry analysis and modulatory activity of Portulaca oleracea and Aquilaria malaccensis extracts against High-fructose and high-fat diet induced immune cells alteration and heart lipid peroxidation in Rats

Author Affiliations

  • 1Department of Cellular and Molecular Biology, Faculty of natural sciences and life, University of ElOued, El-Oued 39000, Algeria
  • 2Department of Cellular and Molecular Biology, Faculty of natural sciences and life, University of ElOued, El-Oued 39000, Algeria
  • 3Department of Cellular and Molecular Biology, Faculty of natural sciences and life, University of ElOued, El-Oued 39000, Algeria

Int. Res. J. Biological Sci., Volume 8, Issue (4), Pages 6-11, April,10 (2019)


Our objective of this investigation is to estimate the influence of Portulaca oleracea (P. oleracea) and Aquilaria malaccensis (A. malaccensis) methanol extracts on High-fructose-fat diet (HFFD) induced immune cells alteration and heart lipid peroxidation in Rats. Twenty five Females rats were equally divided into five groups (n=5) as control, HFFD, HFFD+Po, HFFD+Am and HFFD+Po+Amgroups. High fructose-fat diet was addes in diet of rats with (60% fructose and 60% kcal fat) for 70 days. Methanol extracts of P.oleracea (Po) (400mg/kg bw) and A.malaccensis (Am) (200mg/kg bw) were supplemented orally for four weeks. Methanol extracts of plants were prepared and phytochemicals were analyzed by using HPLC methods. Hematological markers and lipid peroxidationin heart were assessed. Results obtained shown that HFFD induction caused a significant increase in White blood cell (𝑃<0.01), Granulocyte (𝑃<0.05), Lymphocyte (𝑃<0.01) Monocyte (𝑃<0.001) count and heart MDA level and no significant effect in Red blood cell and Hemoglobin level compared to the rats given normal diet. Methanol extracts of P. oleracea and A. malaccensis treatment partially correct the parameters studied. Our study indicate that A. malaccensis possesses the ability to control the heart lipid peroxidation and immune cells alteration associated with High fructose-fat diet.


  1. Basciano H., Federico L. and Adeli K. (2005)., Fructose, insulin resistance, and metabolic dyslipidemia., Nutr.Metab., 2, 5. https://doi:10.1186/1743-7075-2-5.
  2. Derouiche S., Kawther A., Manel D., Soumya B.A. and Kechrid Z. (2013)., The effects of copper supplement on zinc status, enzymes of zinc activities and antioxidant status in alloxan-induced diabetic rats fed on zinc over-dose diet., International Journal of Nutrition and Metabolism, 5(5), 82-87.
  3. Kuller L.H. (1997)., Dietary fat and chronic diseases: epidemiologic overview., J. Am. Diet. Assoc., 97(7 Suppl), S9-S15.
  4. Rizkalla S.W. (2010)., Health implications of fructose consumption: A review of recent data., Nutr.Metab., 7, 82. https://doi:10.1186/1743-7075-7-82.
  5. Tappy L., Lê K.A., Tran C. amd Paquot N. (2010)., Fructose and metabolic diseases: new findings, newquestions., Nutrition., 26(11-12), 1044-1049. https://doi:10.1016/j.nut.2010.02.014.
  6. Monzo-Beltran L., Vazquez-Tarragón A. and Cerdà C. (2017)., One-year follow-up of clinical, metabolic and oxidative stress profile of morbid obese patients after laparoscopic sleeve gastrectomy. 8-oxo-dG as a clinical marker., Redox Biol., 12, 389-402. https://doi:10. 1016/j.redox.2017.02.003.
  7. Rakotoarivelo N.H., Rakotoarivony F., Ramarosandratana A.V., Jeannoda V.H., Kuhlman A.R., Randrianasolo A. and Bussmann R.W. (2015)., Medicinal plants used to treat the most frequent diseases encountered in Ambalabe rural community, Eastern Madagascar., Journal of ethnobiology and ethnomedicine, 11(1), 68..doi:10.1186/s13002-015-0050-2.
  8. Mubashir H.M., Bahar A., Showkat R.M., Bilal A.Z. and Nahida T. (2011)., Portulacaoleracea L. A Review., J. Pharm. Res., 4(9), 3044-3048.
  9. Saikia P. and Khan M.L. (2014)., Ecological Features of Cultivated Stands of Aquilaria malaccensis Lam. (Thymelaeaceae), a Vulnerable Tropical Tree Species in Assamese Homegardens., Int. J. For. Res., 2014, Article ID 140926, 16. http://dx.doi.org/10. 1155/2014/140926.
  10. Hashim Y.Z., Kerr P.G., Abbas P. and Mohd Salleh H. (2016)., Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology., J. Ethnopharmacol., 189, 331-360.
  11. Tobey T.A., Mondon C.E., Zavaroni I. and Reaven G.M. (1982)., Mechanismofinsulin resistance in fructose- fed rats., Metabolism, 31(6), 608-612.
  12. Meng R., Da-Long Z., Yan B., Dong-Hui Y. and Ya-Ping W. (2011)., Anti-Oxidative Effect of Apocyninon Insulin Resistance in High-Fat Diet Mice., Ann. Clin. Lab. Sci., 41(3), 236-243.
  13. Sastre J., Pallardó F.V., García de la Asunción J. and Viña J. (2000)., Mitochondria, oxidative stress and aging., Free Radic. Res., 32(3), 189-198.
  14. Bradford M.M. (1976)., Rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principle of protein-dye binding., Anal. Biochem., 72, 248-254.
  15. Shankar S., Kumar D. and Srivastava R.K. (2013)., Epigenetic Modifications by Dietary Phytochemicals: Implications for Personalized Nutrition., Pharmacol. Ther., 138(1), 1-17.
  16. Corbi G., Conti V., Davinelli S., Scapagnini G., Filippelli A. and Ferrara N. (2016)., Dietary Phytochemicals in Neuroimmunoaging: A New Therapeutic Possibility for Humans., Front Pharmacol., 7, 364. https://doi:10.3389/fphar.2016.00364.
  17. Fontaine K.R., Redden D.T., Wang C.A., Westfall O. and Allison D.B. (2003)., Years of life lost due to obesity., JAMA., 289(2), 187-193.
  18. Oliva L., Aranda T., Caviola G., Fernández-Bernal A., Alemany M., Fernández-López J.A. and Remesar X. (2017)., In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet., Peer J., 5, e3697. https://doi.org/10.7717/peerj.3697.
  19. Hasani-Ranjbar S., Jouyandeh Z. and Abdollahi M. (2013)., A systematic review of anti-obesity medicinal plants - an update., J. Diabetes Metab. Disord., 12(1), 28. https://doi:10.1186/ 2251-6581-12-28.
  20. Zheng J., Zheng S., Feng Q., Zhang Q. and Xiao X. (2017)., Dietary capsaicin and its anti-obesity potency: from mechanism to clinical implications., Bioscience reports, 37(3), BSR20170286. https://doi:10.1042/BSR20170286.
  21. Gomez-Smith M., Karthikeyan S., Jeffers M.S., Janik R., Thomason L.A., Stefanovic B. and Corbett D. (2016)., A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat., Physiol. Behav., 167, 382-391.
  22. Pektas M.B., Koca H.B., Sadi G. and Akar F. (2016)., Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol., Biomed Res. Int., 2016, 8014252. https://doi:10.1155/2016/8014252.
  23. Bratoeva K., Stoyanov G.S., Merdzhanova A. and Radanova M. (2017)., Manifestations of Renal Impairment in Fructose-induced Metabolic Syndrome., Cureus., 9(11), e1826. https://doi:10.7759/cureus.1826.
  24. Klein A.V. and Kiat H. (2015)., The mechanisms underlying fructose-induced hypertension: a review., J. Hypertens., 33(5), 912-920.
  25. Atoussi N., Guediri S. and Derouiche S. (2018)., Changes in Haematological, Biochemical and Serum Electrolytes Markers in Women Breast Cancer Patients., SJRAB., 3(2), 173-177.
  26. Anfal D. and Samir D. (2017)., Study of fluoride-induced haematological alterations and liver oxidative stress in rats., World J Pharm Pharmscie, 6(5), 211-221.
  27. Lee A.S., Lee Y.J., Lee S.M., Yoon J.J., Kim J.S., Kang D.G. and Lee H.S. (2012)., Portulaca oleracea ameliorates diabetic vascular inflammation and endothelial dysfunction in db/db mice., Evidence-Based Complementary and Alternative Medicine, 2012. Article ID 741824, 9. https://doi.org/ 10. 1155/2012/741824.
  28. Yang X., Yan Y., Li J., Tang Z., Sun J., Zhang H. and Liu L. (2016)., Protective effects of ethanol extract from Portulacaoleracea L on dextran sulphate sodium-induced mice ulcerative colitis involving anti-inflammatory and antioxidant., Am. J. Transl. Res., 8(5), 2138-2148.
  29. Cialdella-Kam L., Nieman D., Knab A., Shanely R., Meaney M., Jin F. and Ghosh S. (2016)., A Mixed Flavonoid-Fish Oil Supplement Induces Immune-Enhancing and Anti-Inflammatory Transcriptomic Changes in Adult Obese and Overweight Women-A Randomized Controlled Trial., Nutrients., 8(5), 277. https://doi:10.3390/nu8050277.
  30. Panche A.N., Diwan A.D. and Chandra S.R. (2016)., Flavonoids: an overview., J. Nutr. Sci., 5, e47. https://doi:10.1017/jns.2016.41.
  31. Shukla S. and Gupta S. (2010)., Apigenin: A Promising Molecule for Cancer Prevention., Pharm. Res., 27(6), 962-978. https://doi:10.1007/s11095-010-0089-7.
  32. Konishi T., Konoshima T., Shimada Y. and Kiyosawa S. (2002)., Six new 2-(2-phenylethyl) chromones from Agarwood., Chem. Pharm. Bull. (Tokyo)., 50(3), 419-422.
  33. Yadav D.K., Mudgal V., Agrawal J., Maurya A.K., Bawankule D.U., Chanotiya C.S, Khan F. and Thul S.T. (2013)., Molecular docking and ADME studies of natural compounds of Agarwood oil for topical anti-inflammatory activity., Curr.Comput. Aided Drug Des., 9(3), 360-370.
  34. Derouiche S., Zeghibe K., Gharbi S. and Khelef Y. (2017)., In-vivo study of stress oxidative and liver damage in rats exposed to acetate lead., Int. Res. J. Biological Sci. 6(9), 1-6.
  35. Tangvarasittichai S. (2015)., Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetesmellitus., World J. Diabetes, 6(3), 456-480. https://doi:10.4239/wjd.v6.i3.456.
  36. Lee M.T., Lin W.C., Yu B. and Lee T.T. (2017)., Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals-A review., Asian-Australas J. Anim. Sci., 30(3), 299-308. https://doi:10.5713/ajas.16.0438.
  37. Khoo H.E., Azlan A., Kong K.W. and Ismail A. (2016)., Phytochemials and Medicinal Properties of Indigenous Tropical Fruits with Potential for Commercial Development., Evid Based Complement Alternat.Med., Article ID 7591951, 20 http://dx.doi.org/10.1155/2016/ 7591951.
  38. Papalia T., Barreca D. and Panuccio M.R. (2017)., Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatrophacurcas) Grown in Southern Italy., Int. J. Mol. Sci., 18(3), 660. http://doi:10.3390/ijms18030660.