6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A preliminary study of diversity, prevalence and mean intensity of haemoparasites in green bellied lizards (Darevskia chlorogaster) from north of Iran

Author Affiliations

  • 1Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
  • 2Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran

Int. Res. J. Biological Sci., Volume 8, Issue (3), Pages 8-12, March,10 (2019)


Reptiles are exposed to inter and intracellular apicomplexan blood parasites mainly haemogregarines and haemosporidians, as well as inter cellular kinetoplastida and microfilarians. In the present study diversity, prevalence and intensity of haemoparasites in 50 specimens of Darevskia chlorogaster from north of Iran were investigated. The specimens were captured, blood collected, thin blood smears prepared, stained with Giemsa, and screened with light microscope. According to the morphological characteristics 4 group of apicomplexan blood parasites were detected which belong to haemogregarines and haemosporidians. The prevalence and intensity of apicomplexan blood parasites were consistent with infection of European lacertid lizards. Moreover, we detected one species of trypanosome in red blood cells. To our knowledge this is the first report of trypanosome in Darevskia genus. Molecular methods are needed to identify of apicomplexan parasites as well as trypanosome species due to complexity in life cycle, flexibility in shapes of parasites and few useful characters to differentiate between species.


  1. Telford Sam (2008)., Hemoparasites of the Reptilia: Color Atlas and Text., CRC Press, Boca Raton, Florida, USA.
  2. Kopečná J., Jirků M., Oborník M., Tokarev Y.S., Lukes J. and Modry D. (2006)., Phylogenetic Analysis of Coccidian Parasites from Invertebrates: Search for Missing Links., Protist., 157(2), 173-183.
  3. Mihalca A.D., Racka K., Gherman C. and Ionescu D.T. (2008)., Prevalence and intensity of blood apicomplexan infections in reptiles from Romania., Parasitol. Res., 102(5), 1081-1083.
  4. Haklová-Kočíková B., Hižňanová A., Majláth I., Račka K., Harris D.G. and Földvári G. (2014)., Molecular characterization of Karyolysus- a neglected but common parasite infecting some European lizards., Parasite. Vectors., 7, 555.
  5. O, Haemoprotozoa: Making biological sense of molecular phylogenies., Int. J. Parasitol. Parasites. Wildl., 6(3), 241-256.
  6. Dimitrov D., Zehtindjiev P., Bensch S., Ilieva M., Iezhova T. and Valkiūnas G. (2014)., Two new species Haemoproteus Kruse, 1890 (Haemosporida, Haemoproteidae) from European birds, with emphasis on DNA barcoding for detection of haemosporidians in wildlife., Syst. Parasitol., 87(2), 135-151.
  7. Schmidt G. D., Roberts L.S. and Janovy J. (2013)., Gerald D. Schmidt & Larry S. Roberts, McGraw- Hill Higher Education, 9th edition, 688.
  8. Lee John, Leedale Gordon and Bradbury Phyllis (2000)., Illustrated guide to the protozoa. Second edition. Society of Protozologists., Wiley-Blackwell, New Jersey, 1475.
  9. Silva V., Valenzula A., Ruiz P. and Oyarzun C. (2005)., Trypanosoma humboldti en Schroederichthys chilensis (Cohodrichthyes, Elasmoranchii, Scyliorhinidae) como indicador no destructivo de contaminacion., Gayana., 69, 160-165.
  10. Cook C.A., Netherlands E.C. and Smit N.J. (2016)., Redescription, molecular characterization and taxonomic re-evaluation of a unique African monitor lizard haemogregarine Karyolysus paradoxa (Dias, 1954) n. comb. (Karyolysidae)., Parasite. Vectors., 9, 347.
  11. Hamilton P.B., Gibson W.C. and Stevens J.R. (2007)., Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies., Mol. Phylogenetics. Evol., 44, 15-25.
  12. Silvano D.L. and Segalla M.V. (2005)., Conservação de anfíbios no Brasil., Megadiversidade, 1, 79-86.
  13. Sajjadi S. and Javanbakht H. (2017)., Study of Blood Parasites of the Three Snake Species in Iran: Natrix natrix, Natrix tessellata and Zamenis longissimus (Colubridae)., Journal of Genetic Resources, 3(1), 1-6.
  14. Tuniyev B., Ananjeva N., Agasyan A., Orlov N.L., Tuniyev S. and Anderson S. (2009)., Darevskia chlorogaster. The IUCN Red List of Threatened Species., e.T164702A5919117, http://dx.doi.org/10.2305/IUCN.UK. 2009.RLTS.T164702A5919117.en. Downloaded on 23 November 2018.
  15. Harutyunyan T.K., Danielyan F.D. and Arakelyan M.S. (2015)., Blood parasites morphotypes of rock lizards of Armenia., J. Biol. Chem., 2, 45-49.
  16. Jakes K.A., O'Donoghue P.J. and Cameron S.L. (2003)., Phylogenetic relationships of Hepatozoon (Haemogregarina) boigae, Hepatozoon sp., Haemogregarina clelandi and Haemoproteus chelodina from Australian reptiles to other Apicomplexa based on cladistic analyses of ultrastructural and life-cycle characters., Parasitol., 126, 555-559.
  17. Amo L., Lopez P. and Martin J. (2004)., Prevalence and intensity of haemogregarinid blood parasites in a population of the Iberian rock lizard, Lacerta monticola., Parasitol. Res., 94(4), 290-293.
  18. Molnar O., Bajer K., Meszaros B., Török J. and Herczeg G. (2013)., Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton-Zuk hypothesis., Naturwissenschaften., 100(6), 551-558.
  19. Maia J., Perera A. and Harris D.J. (2012)., Molecular survey and microscopic examination of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) in lacertid lizards from the western Mediterranean., Folia. Parasitol., 59(4), 241-248.