6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

The physiological role of Vitamin D in the female fertility in rats

Author Affiliations

  • 1Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
  • 2Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
  • 3Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
  • 4Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt

Int. Res. J. Biological Sci., Volume 8, Issue (3), Pages 1-7, March,10 (2019)


This study was set up to assess the role of vitamin D on the female fertility using albino rats in order to get benefit from its use. For this study, fifty female albino rats obtained as weanling (21 days-old) weighing 30 g, were allocated randomly into 2 equal groups (First group was vitamin D-deficient rats which fed vitamin D deficient diet and the second group is vitamin D-replete rats which fed the same diet but received 2µg cholecalciferol per week in 0.1ml propylene glycol by a single intra peritoneal injection). A animals were maintained till become adult. The body weight was recorded from the age of 21 till the age of 4 months, the length and regularity of estrus cycle were monitored daily by vaginal smears and sera were used for determination of estrogen level. Tissue samples (ovaries and uteri) were used for histopathological examination. The obtained results showed a significant increase in the body weights of the replete females as compared with the deficient group. Moreover, the deficient females had longer days of estrus cycle. Estradiol level in the deficient females was lower than the replete females. Histopathological examination of the ovary showed abnormal development of the follicles and uterine hypoplasia was recorded in the deficient females as compared with the replete one. Vitamin Dare capable of inducing useful effects on the reproductive systems of female rats.


  1. Bouillon R., Okamura W.H. and Norman A.W. (1995)., Structure-function relationships in the vitamin D endocrine system., Endocrine reviews, 16(2), 200-257.
  2. Mizwicki M.T., Menegaz D., Yaghmaei S., Henry H.L. and Norman A.W. (2010)., A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): structure-function implications., J. Steroid Biochem. Mol. Biol., 121, 98-105.
  3. Dusso A.S. (2005)., Brown A.J., Slatopolsky E., Vitamin D., Am J Physiol Renal Physiol., 289, F8-F28.
  4. Lal H., Pandey R. and Aggarwal S.K. (1999)., Vitamin D: Non-skeletal actions and effects on growth., Nutrition Research, 19(11), 1683-1718.
  5. Anagnostis P., Karras S. and Goulis D.G. (2013)., Vitamin D in human reproduction: a narrative review., International journal of clinical practice, 67(3), 225-235.
  6. Stumpf W.E. (1995)., Vitamin D sites and mechanisms of action: a histochemical perspective. Reflections on the utility of autoradiography and cytopharmacology for drug targeting., Histochem. Cell Biol., 104(6), 417-427.
  7. Kinuta K., Tanaka H., Moriwake T., Aya K., Kato S. and Seino Y. (2000)., Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads., Endocrinology, 141, 1317-1324.
  8. Kumari K.R. and Hadalagi N.M. (2015)., Role of sunshine vitamin "D" sufficiency in male and female infertility., International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 4(2), 305-311.
  9. Kwiecinski G.G., Petrie G.I. and DeLuca H.F. (1989)., Vitamin D is necessary for reproductive functions of the male rat., J. Nutr., 119, 741-744.
  10. Johnson L.E. and DeLuca H.F. (2002)., Reproductive Defects Are Corrected in Vitamin D-Deficient Female Rats Fed a High Calcium, Phosphorus and Lactose Diet., J. Nutr., 132, 2270-2273.
  11. Halloran B.P. and DeLuca H.F. (1980)., Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat., J. Nutr., 110(8), 1573-1580.
  12. Yoshizawa T., Handa Y., Uematsu Y., Takeda S., Sekine K., Yoshihara Y., Kawakami T., Arioka K., Sato H., Uchiyama Y., Masushige S., Fukamizu A., Matsumoto T. and Kato S. (1997)., Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia, and growth retardation after weaning., Nat. Genet., 16, 391-396.
  13. Sun W., Xie H., Ji J., Zhou X., Goltzman D. and Miao D. (2010)., Defective female reproductive function in 1,25(OH)2D-deficient mice results from indirect effect mediated by extracellular calcium and/or phosphorus., Am. J. Physiol. Endocrinol. Metab., 299, 928-935.
  14. Uhland A.M., Kwiecinski G.G. and Deluca H.F. (1992)., Normalization of serum calcium restores fertility in vitamin D-deficient male rats., J. Nutr., 122, 1338-1344.
  15. National Research Council (NRC) (1995)., Nutrient Requirements of Laboratory Animals., Fourth Revised Edition, Washington, D.C., National Academy Press.
  16. Suda T., DeLuca H.F. and Tanaka Y. (1970)., Biological activity of 25-hydroxyergocalciferol in rats., The Journal of nutrition, 100(9), 1049-1052.
  17. Laing J.A. (1979)., Fertility and infertility in domestic animals in pregnancy diagnosis., Third edition, 54.
  18. Lichtenberg V., Schulte-Baukloh A., Lindner Ch. and Braendle W. (1992)., Discrepancies between results of serum 17β-Oestradiol E2 determinations carried out using different immunoassay kits in women receiving oestrogen replacement therapy., Lab med., 16, 412-416.
  19. Johnson M.R., Carter G., Grint C. and Lightman S.L. (1993)., Relationship between ovarian steroids, gonadotropin and relaxin during the menstrual cycle., Acta Endocrinol., 129(2), 121-125.
  20. Bancroft J.D. and Gamble M. (2008)., Theory and Practice of Histological Technique., 4th Ed., Churchill, Livingston, New York, London, San Francisco, Tokyo.
  21. SPSS (2012)., Statistical package for social sciences., 21.0 for Windows, U.S.A. Copyright 2012, spss Inc.
  22. Zanatta L., Zamoner A., Gonçalves R., Zanatta A., Bouraïma-Lelong H., Bois C., Carreau S. and Silva F.R. (2011)., Effect of 1a,25-dihydroxyvitamin D3 in plasma membrane targets in immaturerat testis: Ionic channels and gamma-glutamyltranspeptidase activity., Archives of Biochemistry and Biophysics, 515, 46-53.
  23. Osmundsen B.C., Huang H.F.S., Anderson M.B., Christakos S. and Walters M.R. (1989)., Multiple sites of action of the vitamin D endocrine system: FSH stimulation of testis 1,25-dihydroxyvitamin D3 receptor., J. Steroid Biochem., 34, 339-343.
  24. Agic A., Xu H., Altgassen C., Noack F., Wolfler M.M., Diedrich K., Friedrich M., Taylor R.N. and Hornung D. (2007)., Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1α-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers., Reproductive Sciences, 14(5), 486-497.
  25. Shahbazi M., Jeddi-Tehrani M., Zareie M., Salek-Moghaddam A., Akhondi M.M., Bahmanpoor M., Sadeghi M.R. and Zarnani A.H. (2011)., Expression profiling of vitamin D receptor in placenta, decidua and ovary of pregnant mice., Placenta, 32(9), 657-664.
  26. Blomberg Jensen M., Nielsen J.E., Jørgensen A., Rajpert-De Meyts E., MøbjergKristensen D., Jørgensen N., Skakkebaek N.E., Juul A. and Leffers H. (2010)., Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract., Human Reproduction, 25(5), 1303-1311.
  27. Sood S., Marya R.K., Reghunandanan R., Singh G.P., Jaswal T.S. and Gopinathan K. (1992)., Effect of vitamin D deficiency on testicular function in the rat., Ann. Nutr. Metab., 36(4), 203-208.
  28. Sood S., Reghunandanan R., Reghunandanan V., Marya R. K. and Singh P.I. (1995)., Effect of vitamin D repletion on testicular function in vitamin D-deficient rats., Ann. Nutr. Metab., 39(2), 95-98.
  29. Janssen H.C., Samson M.M. and Verhaar H.J. (2002)., Vitamin D deficiency, muscle function, and falls in elderly people., American Journal of Clinical Nutrition, 75(4), 611-615.
  30. Dace A., Martin-el Yazidi C., Bonne J., Planells R. and Torresani J. (1997)., Calcitriol is a positive effector of adipose differentiation in the OB 17 cell line: relationship with the adipogenic action of triiodothyronine., Biochemical and Biophysical Research Communications, 232(3), 771-776.
  31. Kurose H., Yamaoka K., Okada S., Nakajima S. and Seino Y. (1990)., 1, 25-Dihydroxyvitamin D3 [1, 25-(OH) 2D3] increases insulin-like growth factor I (IGF-I) receptors in clonal osteoblastic cells. Study on interaction of IGF-I and 1, 25-(OH) 2D3., Endocrinology, 126(4), 2088-2094.
  32. Singh K.P. and Dash R.J. (1997)., Vitamin D endocrine system., J. Assoc. Physicians, India, 45, 559-568.
  33. Zarnani A.H., Shahbazi M., Salek-Moghaddam A., Zareie M., Tavakoli M., Ghasemi J., Rezania S., Moravej A., Torkabadi E., Rabbani H. and Jeddi-Tehrani M. (2010)., Vitamin D3 receptor is expressed in the endometrium of cycling mice throughout the estrous cycle., Fertil., Steril., 93(8), 2738-2743.
  34. Dicken C.L., Israel D.D., Davis J.B., Sun Y., Shu J., Hardin J. and Neal-Perry G. (2012)., Peripubertal Vitamin D3 Deficiency Delays Puberty and Disrupts the Estrous Cycle in Adult Female Mice., Biology of Reproduction, 87(2), 51, 1-12.
  35. Jukic A.M.Z., Steiner A.Z. and Baird D.D. (2015)., Lower plasma 25-hydroxyvitamin D is associated with irregular menstrual cycles in across-sectional study., Reproductive Biology and Endocrinology, 13, 20.
  36. Nelson D.R., Kamataki T., Waxman D.J., Guengerich F.P., Estabrook R.W., Fey-Ereisen R., Gonzalez F.J., Coon M. J., Gunsalus I.C., Gotoh O., Okuda K. and Nebert D.W. (1993)., The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature., DNA Cell Biol., 12, 1-51.
  37. Fisher C.R., Graves K.H., Parlow A.F. and Simpson E.R. (1998)., Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene., Proc. Natl. Acad. Sci., USA, 95(12), 6965-6970.
  38. Abdullah U.H., Lalani S., Syed F., Arif S. and Rehman R. (2017)., Association of Vitamin D with outcome after intra cytoplasmic sperm injection., The Journal of Maternal-Fetal & Neonatal Medicine, 30(1), 117-120.