6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Role of peptide hormones in plants

Author Affiliations

  • 1Plant Physiology and Biochemistry Lab., Department of Plant Science, M.J.P. Rohilkhand University, Bareilly, UP-243006, India
  • 2Plant Physiology and Biochemistry Lab., Department of Plant Science, M.J.P. Rohilkhand University, Bareilly, UP-243006, India

Int. Res. J. Biological Sci., Volume 8, Issue (2), Pages 15-23, February,10 (2019)

Abstract

The classical plant growth regulators have been studied as key regulators in the growth and development of plants since nineteenth century, but the researches of last few years indicate that peptides are also take part in plant signaling for growth and developmental processes like defense responses, cell elongation, cell differentiation, cell proliferation, meristem organization, nodule development, self incompatibility and organ abscission etc. In plants, peptides are synthesized by using mRNA as a template and most often go to post translational modifications to yield mature peptide. Here in this review paper we are trying to provide an overview on peptide hormones along with their functions regarding plant growth and development.

References

  1. Matsubayashi Y. and Sakagami Y. (2006)., Peptide Hormones in Plants., Annual Review of Plant Biology, 57, 649-674.
  2. Lindsey K., Casson S. and Chilley P. (2002)., Peptides: new signaling molecules in plants., Trends in Plant Sciences, 7(2), 78-83.
  3. Vanstraelen M. and Benkova E. (2012)., Hormonal interactions in the regulation of plant development., Annual Review of Cell and Developmental Biology, 28, 463-487.
  4. Van Norman J.M., Breakfield N.W. and Benfey P.N. (2011)., Intercellular communication during plant development., Plant Cell, 23, 855-864.
  5. Murphy E., Smith S. and De Smet I. (2012)., Small signaling peptides in Arabidopsis development: how cells communicate over a short distance., Plant Cell, 24(8), 3198-3217.
  6. Pearce G., Strydom D., Johnson S. and Ryan C.A. (1991)., A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins., Science, 253,895-897.
  7. Sande K.V., Pawlowski K., Czaja I., Wieneke U., Schell J., Schmidt J., Walden R., Matvienko M., Wellink J., Van Kammen A., Franssen H. and Bisseling T. (1996)., A peptide encoded by ENOD40 of legumes and a nonlegume modifies phytohormone response., Science, 273, 370-373.
  8. Sawa S., Kinoshita A., Nakanomyo I. and Fukuda H. (2006)., CLV3/ESR-related (CLE) peptides as intercellular signaling molecules in plants., The Chemical Record, 6(6), 303-310.
  9. Tabata R. and Sawa S. (2014)., Maturation processes and structures of small secreted peptides in plants., Frontiers in Plant Science, 5, 311.
  10. Matsubayashi Y. (2011)., Post translational modifications in secreted plant hormones in plants., Plant and Cell Physiology, 52, 5-13.
  11. Ghorbani S.A., Fernandez A., Hilson P. and Beeckman T. (2014)., Signaling peptides in plants., Cell and Developmental Biology, 3(2), 141.
  12. Fletcher J.C., Brand U., Running M.P., Simon R. and Meyerowitz E.M. (1999)., Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems., Science, 283, 1911-1914.
  13. Ito Y., Nakanomyo I., Motose H., Iwamoto K., Sawa S., Dohmae N. and Fukuda H. (2006)., Dodeca-CLE peptides as suppressors of plant stem cell differentiation., Science, 313(5788), 842-845.
  14. Ohyama K., Sinohara H., Ogawa-Ohnishi M. and Matsubayashi Y. (2009)., A glycopeptides regulating stem cell fate in Arabidopsis thaliana., Nature Chemical Biology, 5, 578-580.
  15. Kiyohara S. and Sawa S. (2012)., CLE signaling systems during plant development and nematode infection., Plant and Cell Physiology, 53(12), 1989-1999.
  16. Amano Y., Tsubouchi H., Shinohara H., Ogawa M. and Matsubayashi Y. (2007)., Tyrosine-sulfated glycopeptides involved in cellular proliferation and expansion in Arabidopsis., Proceedings of the National Academy of Sciences, 104(46), 18333-18338.
  17. Ohyama K., Ogawa M. and Matsubayashi Y. (2008)., Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis., The Plant Journal, 55, 152-160.
  18. Deley C., Imin N. and Djordjevic M.A. (2013)., CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants., Journal of Experimental Botany, 64, 5383-5394.
  19. Roberts I., Smith S., De Rybel B., Van Den Broeke J., Smet W., De Cokere S. and Beeckman T. (2013)., The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development., Journal of experimental botany, 64(17), 5371-5381.
  20. Matsuzaki Y., Ogawa-Ohnishi M., Mori A. and Matsubayashi Y. (2010)., Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis., Science, 329, 1065-1067.
  21. Meng L., Buchanan B.B., Feldman L.J. and Luan S. (2012)., CLE like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis., Proceedings of the National Academy of Sciences, 109(5), 1760-1765.
  22. Whitford R., Fernandez A., Tejos R., Pérez A.C., Kleine-Vehn J., Vanneste S. and Hoogewijs K. (2012)., GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses., Developmental cell, 22(3), 678-685.
  23. Schopfer C.R., Nasrallah M.E. and Nasrallah J.B. (1999)., The male determinant of self-incompatibility in Brassica., Science, 286, 1697-1700.
  24. Takayama S., Shimosato H., Shiba H., Funato M., Che F.S. and Watanabe M. (2001)., Direct ligand-receptor complex interaction controls Brassica self-incompatibility., Nature, 413, 534-538.
  25. Okuda S., Tsutsui H., Shiina K., Sprunck S., Takeuchi H., Yui R. and Kawano N. (2009)., Defense in-like polypeptide LUREs are pollen tube attractants secreted from synergids cells., Nature, 458, 357-361.
  26. Hara K., Kajita R., Torii K.U., Bergmann D.C. and Kakimoto T. (2007)., The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule., Genes and Development, 21, 1720-1725.
  27. Sugano S.S., Shimada T., Imai Y., Okawa K., Tamai A. and Mori M. and Hara-Nishimura I. (2010)., Stomagen positively regulates stomatal density in Arabidopsis., Nature, 463, 241-244.
  28. Haruta M., Sabat G., Stecker K., Minkoff B.B. and Sussman M.R. (2014)., A peptide hormone and its receptor protein kinase regulate plant cell expansion., Science, 343, 408-411.
  29. Moore K.L. (2003)., The biology and enzymology of protein tyrosine O-sulfation., Journal of Biological Chemistry, 278, 24243-24246.
  30. Kehoe J.W. and Bertozzi C.R. (2000)., Tyrosine sulfation: a modulator of extracellular protein-protein interactions., Chemistry & Biology, 7(3), R57-R61.
  31. Matsubayashi Y. and Sakagami Y. (1996)., Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L., Proceedings of the National Academy of Sciences, 93(15), 7623-7627.
  32. Myllyharju J. (2003)., Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis., Matrix Biology, 22, 15-24.
  33. Kondo T., Sawa S., Kinoshita A., Mizuno S., Kakimoto T., Fukuda H. and Sakagami Y. (2006)., A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis., Science, 313(5788), 845-848.
  34. Ogawa-Ohnishi M., Matsushita W. and Matsubayashi Y. (2013)., Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana., Nature Chemical Biology, 9(11), 726-730.
  35. Green T.R. and Ryan C.R. (1972)., Wound-induced proteinase inhibitor in plant leaves: a possible defence mechanism against insects., Science, 175, 776-777.
  36. Ryan C.A. (1990)., Proteinase inhibitors in plants: genes for improving defenses against insects and pathogens., Annual Review of Phytopathology, 28, 425-449.
  37. Stratmann J.W. (2003)., Long distance run in the wound response-jasmonic acids is pulling ahead., Trends in Plant Science, 8(6), 247-250.
  38. Ryan C.A. and Pearce G. (2003)., Systemin: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species., Proceedings of the National Academy of Sciences, 100(2), 14577-14580.
  39. Narvaez-Vasquez J. and Ryan C. (2004)., The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling., Planta, 218(3), 360-369.
  40. Shiu S.H. and Bleecker A.B. (2001)., Arabidopsis Genome Initiative., Nature, 408, 796-815.
  41. Scheer J.M. and Ryan C.A. (2002)., The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family., Proceedings of the National Academy of Sciences, 99(14), 9585-9590.
  42. Chen H., Wilkerson C.G., Kuchar J.A., Phinney B.S. and Howe G.A. (2005)., Jasmonate inducible plant enzymes degrade essential amino acids in the herbivore midgut., Proceedings of the National Academy of Sciences, 102, 19237-19242.
  43. Corrado G., Agrelli D., Rocco M., Basile B., Marra M. and Rao R. (2011)., Systemin-inducible defence against pest is costly in tomato., Biologia Plantarum, 55(2), 305-311.
  44. Orozco-Cardenas M., Grul B.Mc. and Ryan C.A. (1993)., Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae., Proceedings of the National Academy of Sciences, 90(17), 8273-8276.
  45. Ornisi F., Cascone P., Pascale S.D., Barbieri G., Corrado G., Rao R. and Maggio A. (2010)., Systemin dependent salinity tolerance and in tomato: evidence of specific convergence of abiotic and biotic stress responses., Physiologia Plantarum, 138(1), 10-21.
  46. Holtan N., Harrison K., Yokota T. and Bishop G.J. (2008)., Tomato BRI1 and systemin wound signaling., Plant signaling & Behavior, 3(1), 54-55.
  47. Yang H., Matsubayashi Y., Nakamura K. and Sakagami Y. (1999)., Oryza sativa PSK genes encodes a precursor of phytosulfokine-α, a sulfated peptide growth factor found in plants., Proceedings of the National Academy of Sciences, 96(23), 13560-13565.
  48. Yang H., Matsubayashi Y., Nakamura K. and Sakagami Y. (2001)., Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor., Plant Physiology, 127(3), 842-851.
  49. Lorbiecke R. and Sauter M. (2002)., Comparative analysis of PSK peptide growth factor precursor homologs., Plant Science, 163, 321-332.
  50. Matsubayashi Y., Takagi L. and Sakagami Y. (1997)., Phytosulfokine-α, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high and low affinity binding sites., Proceedings of the National Academy of Sciences, 94(24), 13357-13362.
  51. Matsubayashi Y., Morita A., Matsunaga E., Fruya A., Hanai N. and Sakagami Y. (1999)., Physiological relationships between auxin, cytokinin, and peptide growth factor, phytosulfokine-α in stimulation of asparagus cell proliferation., Planta, 207, 559-565.
  52. Hanai H., Matsuno T., Yamamoto M., Matsubayashi Y., Kobayashi T., Kamada H. and Sakagami Y. (2000)., A secreted peptide growth factor, phytosulfokine, acting as a stimulatory factor of carrot somatic embryo formation., Plant and Cell Physiology, 41, 27-32.
  53. Grzebelus E., Szklarczyk M., Gren J., Sniegowska K., Jopek M., Kacinska I. and Mrozek K. (2012)., Phytosulfokine stimulates cell divisions in sugar beet (Beta vulgaris L.) mesophyll protoplast cultures., Plant growth Regulators, 67, 93-100.
  54. Matsubayashi Y., Ogawa M., Morita A. and Sakagami Y. (2002)., An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine., Science, 296, 1470-1472.
  55. Pearce G., Moura D.S., Stratmann J. and Ryan C.A. (2001)., RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development., Proceedings of the National Academy of Sciences, 98(22), 12843-12847.
  56. Ryan C.A. and Pearce G. (2001)., Polypeptide hormones., Plant Physiology, 125(1), 65-68.
  57. Bedinger P.A., Pearce G. and Covey P.A. (2010)., RALFs: Peptide regulators of plant growth., Plant Signaling & Behaviour, 5(11), 1342-1346.
  58. Matos J.L., Fiori C.S., Silva-Filho M.C. and Moura D.S. (2008)., A conserved dibasic site is essential for the correct processing of the peptide hormone AtRALF1 in Arabidopsis thaliana., FEBS Letters, 582, 3343-3347.
  59. Srivastava R., Liu J.X., Guo H., Yin Y. and Howell S.H. (2009)., Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis., The Plant Journal, 59(6), 930-939.
  60. Combier J.P., Köster H., Journet E.P., Hohnjec N., Gamas P. and Niebel A. (2008)., Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1., Molecular plant-microbe interactions, 21(8), 1118-1127.
  61. Clark S.E., Running M.P. and Meyerowitz E.M. (1993)., CLAVATA1 a regulator of meristem and flower development in Arabidopsis., Development, 119, 397-418.
  62. Waites R. and Simon R. (2000)., Signaling cell fate in plant meristems: three clubs on one tousle., Cell, 103(6), 835-838.
  63. Rojo E., Sharma V.K., Kovaleva V., Raikhel N.V. and Fletcher J.C. (2002)., CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway., Plant Cell, 14(5), 969-977.
  64. Brand U., Grunewald M., Hobe M. and Simon R. (2002)., Regulation of CLV3 expression by two homeobox genes in Arabidopsis., Plant Physiology, 129, 565-575.
  65. Schoof H., Lenhard M., Haecker A., Mayer K.F., Jörgens G. and Laux T. (2000)., The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes., Cell, 100(6), 635-644.
  66. Hobe M., Muller R., Grunewald M., Brand U. and Simon R. (2003)., Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis., Development Genes and Evolution, 213, 371-381.
  67. Rohring H., Schmidt J., Miklashevichs E., Schell J. and Jhon M. (2002)., Soyabean ENOD40 encodes two peptide that bind to sucrose synthase., Proceedings of the National Academy of Sciences, 99(4), 1915-1920.
  68. Kouchi H., Takane K., So R.B., Ladha K. and Reddy P.M. (1999)., Rice ENOD40: isolation and expression analysis in rice and transgenic soyabean root nodules., The Plant Journal, 18(2), 121-129.
  69. Compaan B., Yang W.C., Bisseling T. and Franssen H.J. (2001)., ENOD40 expression in the pericycle precedes cortical cell division in Rhizobium-legume interaction and the highly conserved internal region of the gene does not encode a peptide., Plant and Soil, 230(1), 1-8.
  70. Franssen H.J. (1998)., Plants embrace a stepchild: the discovery of peptide growth regulators., Current Opinion in Plant Biology, 1(5), 384-387.
  71. Bisseling T. (1999)., The role of plant peptides in intercellular signaling., Current Opinion in Plant Biology, 2(5), 365-368.
  72. Yang H., Matsubayashi Y., Hanai H. and Sakagami Y. (2000)., Phytosulfokine-α, a peptide growth factor found in higher plants: its structure, functions, precursor and receptors., Plant and Cell Physiology, 41(7), 825-830.
  73. Kumagai H., Kinoshita E., Ridge R.W. and Kouchi H. (2006)., RNAi knoch-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicas., Plant and Cell Physiology, 47(8), 1102-1111.
  74. Papadopoulou K., Roussis A. and Katinkis P. (1996)., Phaseolus ENOD40 is involved in symbiotic and nonsymbiotic organogenetic processes: expression during nodule and lateral root development., Plant Molecular Biology, 30, 403-417.
  75. Vleghels I., Hontelez J., Ribeiro A., Fransz P., Bisseling T. and Franssen H. (2003)., Expression of ENOD40 during tomato plant development., Planta, 218, 42-49.
  76. Fukuda H., Hirakawa Y. and Sawa S. (2007)., Peptide signaling in vascular development., Current opinion in plant biology, 10(5), 477-482.
  77. Bateman A.J. (1955). Self-incompatibility systems in angiosperms III Cruciferae. Heredity, 9, 53-68., undefined, undefined
  78. Takayama S., Shiba H., Iwano M., Shimosato H., Che F.S., Kai N., Watanabe M., Suzuki G., Hinata K. and Isogai A. (2000)., The pollen determinant of self-incompatibility in Brassica compestris., Proceedings of the National Academy of Sciences, 97(4), 1920-1925.
  79. Iwano M., Shiba H., Funato M., Shimosato H., Takayama S. and Isogai A. (2003)., Immuno-histochemical studies on translocation of pollen Shaplotype determinant in self-incompatibility of Brassica rapa., Plant and Cell Physiology, 44(4), 428-436.
  80. Matsubayashi Y. (2003)., Ligand receptor pairs in plant peptide signaling., Journal of Cell Science, 116, 3863-3870.
  81. Troppign J.F. and Lindsey K. (1997)., Promoters trap markers differentiate structural and positional components of polar development in Arabidopsis., Plant Cell, 9(10), 1713-1725.
  82. Casson S.A., Chiley P.M., Tropping J.F., Evans I.M., Souter M.A. and Lindsey K. (2002)., The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning., Plant Cell, 14(8), 1705-1721.
  83. Butenko M.A., Patterson S.E., Grini P.E., Stenvik G.E., Amundsen S.S., Mandal A. and Aalen R.B. (2003)., Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants., The Plant Cell, 15(10), 2296-2307.
  84. Jinn T.L., Stone J.M. and Walker J.C. (2000)., HAESA, an Arabidopsis CLAVATA2 gene encodes a receptor like protein required for the stability of the CLAVATA1 receptor like kinase., Plant Cell, 11, 1925-1934.
  85. Kumpf R.P., Shi C.L., Larrieu A., Stø I.M., Butenko M.A., Péret B. and Aalen R.B. (2013)., Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence., Proceedings of the National Academy of Sciences, 110, 5235-5240.
  86. Narita N.N., Moore S., Horiguchi G., Kubo M., Demura T., Fukuda H. and Tsukaya H. (2004)., Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana., The Plant Journal, 38(4), 699-713.
  87. Wen J., Lease K.A. and Walker J.C. (2004)., DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development., The Plant Journal, 37(5), 668-677.
  88. Lease K.A. and Walker J.C. (2006)., The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics., Plant Physiology, 142, 831-838.
  89. Srivastava R., Liu J.X. and Howell S.H. (2008)., Proteolytic processing of a precursor protein for a growth‐promoting peptide by a subtilisin serine protease in Arabidopsis., The Plant Journal, 56(2), 219-227.
  90. Tamaki T., Betsuyaku S., Fujiwara M., Fukao Y., Fukuda H. and Sawa S. (2013)., SUPPRESSOR OF LLP 1 1‐mediated C-terminal processing is critical for CLE 19 peptide activity., The Plant Journal, 76(6), 970-981.