International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Amylases: A Note on Current Applications

Author Affiliations

  • 1Department of Biochemistry, VP Chest Institute, University of Delhi, Delhi-110007, India
  • 2Division of Structural Biology and Biophysics, Mill Hill Laboratory, The Francis Crick Institute, London, UK
  • 3Department of Biochemistry, VP Chest Institute, University of Delhi, Delhi-110007, India
  • 4Centre for Molecular Biology, Central University of Jammu, Jammu-181143 (J&K) India

Int. Res. J. Biological Sci., Volume 5, Issue (11), Pages 27-32, November,10 (2016)

Abstract

Enzymes have been used successfully for different types of industries and microorganisms have proved their recognition in the production of enzymes invaluable for industry. Amylase is a highly efficient commercial biocatalyst with an extensive range of utilizations from food to non-food industries. The hydrolytic activities of amylases on glycosidic bonds in starch have successfully replaced chemical processing of starch in different industries due to cost effectiveness and technical advantages. Production of glucose/fructose syrups and most widely used biofuel results from the catalytic activity of amylases. Amylases are used for a variety of applications in different enterprises including food, paper, detergent and textile industry. Additionally, amylases may also have potential application in pharmaceutical and fine chemical industries.

References

  1. Singh R., Kumar M., Mittal A. and Mehta P.K. (2016)., Microbial enzymes: Industrial progress in 21st century., 3 Biotech (2016) 6:174. DOI 10.1007/s13205-016-0485-8
  2. Gupta R., Gigras P., Mohapatra H., Goswami V.K. and Chauhan B. (2003)., Microbial α- amylases: a biotechnological perspective., Process Biochem., 38, 1599 - 1616.
  3. Li S., Yang X. and Yang S. et al. (2012)., Technology prospecting on enzymes: application, marketing and engineering., Comput. Struct. Biotechnol. J., 2, 1–11.
  4. Tiwari S.P., Srivastava R., Singh C.S., Shukla K., Singh R.K., Singh P., Singh R., Singh N.L. and Sharma R. (2015)., Amylases: An overview with special reference to alpha amylase., Journal of Global Biosciences, 4(1), 1886-1901.
  5. Crueger W. and Crueger A. (2006)., Bio-Technology. A Text book of Industrial Microbiology., 161-186.
  6. Saranraj P. and Stella D. (2013)., Fungal Amylase - A Review., International Journal of Microbiological Research, 4(2), 203-211. DOI: 10.5829/idosi.ijmr.2013.4.2.75170
  7. Mojsov K. (2012)., Microbial alpha-amylases and their industrial applications: a review., Int. J. Manage. IT. Eng., 2(10), 583–609.
  8. Oseni O.A. and Ekperigin M.M. (2014)., Activity of β-Amylase in Some Fungi Strains Isolated from Forest Soil in South-Western Nigeria., British Biotechnology Journal, 4(1), 1-9, 2014.
  9. Buleon A., Colonna P., Planchot V. and Ball S. (1988)., Starch granules: structure and biosynthesis., Int. J. Biol. Macromol., 23, 85–112.
  10. Sharma A. and Satyanarayana T. (2013)., Microbial acid-stable-amylases: Characteristics, genetic engineering and applications., Process Biochemistry, 48, 201–211.
  11. Synowiecki J. (2007)., Industrial Enzymes, J. Polaina and A.P. MacCabe (eds.), 19-34.
  12. Pandey A., Nigam P., Soccol C.R.V.T., Soccol V., Singh D. and Mohan R. (2000)., Advances in microbial amylases., Biotechnology and Applied Biochemistry, 31, 135-152.
  13. Vengadaramana A. (2013)., Industrial Important Microbial alpha-Amylase on Starch-Converting Process., Sch. Acad. J. Pharm., 2(3), 209-221.
  14. Sundarram A. and Murthy T.P.K. (2014)., α-Amylase Production and Applications: A Review., Journal of Applied & Environmental Microbiology, 2(4), 166-175.
  15. Agrawal M., Pradeep S., Chandraraj K. and Sathyanarayana N.G. (2005)., Hydrolysis of starch by amylase from Bacillus Sp. KCA102: A statistical approach., Process Biochemistry, 40, 2499-2507. doi:10.1016/j.procbio.2004.10.006.
  16. Akkaya B., Yenidünya A.F. and Akkaya R. (2012)., Production and immobilization of a novel thermoalkalophilic extracellular amylase from bacilli isolate., International Journal of Biological Macromolecules, 50, 991-995. doi:10.1016/j.ijbiomac.2012.02.011.
  17. Benjamin S., Smitha R.B., Jisha V.N., Pradeep S., Sajith S., Sreedevi S., Priji P., Unni K.N., Sarath Josh M.K. (2013)., A monograph on amylases from Bacillus spp., Advances in Bioscience and Biotechnology, 4, 227-241. http://dx.doi.org/10.4236/abb.2013.42032.
  18. Tester R.F. and Karkalas J. (2002)., Starch in: Biopolymers, Polysaccharides II: Polysaccharides from Eukaryotes., (A. Steinbüchel series ed.; E. J. Vandamme, S. De Baets and A. Steinbüchel volume eds), Weinheim: Wiley-VCH., 6, 381-438.
  19. Demirkan E.S., Mikami B., Adachi M., Higasa T. et al. (2005)., Alpha amylase from B. amyloliquefaciens: Purification, characterization, raw starch degradation and expression in E. coli., Process Biochemistry, 40, 2629-2646. doi:10.1016/j.procbio.2004.08.015.
  20. Rajagopalan G. and Krishnan C. (2008)., α-amylase production from catabolite depressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresource Technology., 99, 3044-3050. doi:10.1016/j.biortech.2007.06.001.
  21. Ye Z., Miyake H., Tatsumi M., Nishimura S. et al. (2004)., Two additional carbohydrate-binding sites of α-amylase from Bacillus cereus var. mycoides are Involved in Hydrolysis and Raw Starch-Binding., Journal of Biochemistry, 135, 355-363. doi:10.1093/jb/mvh043
  22. Ray R., Jana S.C. and Nanda G. (1994)., Biochemical approaches of increasing thermostability of β-Amylase from Bacillus megaterium B6, Folia Microbiologica, 39, 567-570. doi:10.1007/BF02814110.
  23. Tateno T., Fukuda H. and Kondo A. (2007)., Production of L-Lysine from starch by Corynebacterium glutamicum displaying á-amylase on its cell surface., Applied Microbiology and Biotechnology, 74, 1213-1220. doi:10.1007/s00253-006-0766-y
  24. Kumar P. and Satyanarayana T. (2009)., Microbial glucoamylases: Characteristics and applications., Critical Reviews in Biotechnology., 29, 225-255. doi:10.1080/07388550903136076.
  25. Jansen B. and Olsen J. (1999)., Amylases and their industrial potential., Thermophilic moulds in Biotechnology. Netherlands: Kluwer Academic Publishers, 115-37.
  26. Nielsen J.E. and Borchert T.V. (2000)., Protein engineering of bacterial alpha-amylases., Biochim. Biophys. Acta., 1543, 253-274.
  27. Prakash O. and Jaiswal N. (2009)., alpha-Amylase: An Ideal Representative of Thermostable Enzymes., Appl. Biochem. Biotechnol., 160(8), 2401-14. doi: 10.1007/s12010-009-8735-4. Epub 2009 Sep 8.
  28. Souza P.M. and Magalhães P.O. (2010)., Application of Microbial -Amylase In Industry – A Review., Brazilian Journal of Microbiology, 41, 850-861.
  29. El-Fallal A., Dobara M.A., El-Sayed A. and Omar N. (2012)., Starch and Microbial α-Amylases: From Concepts to Biotechnological Applications., Chapter 21 in “Carbohydrates – Comprehensive Studies on Glycobiology and Glycotechnology, http://dx.doi.org/ 10.5772/51571.
  30. Chi Z., Chi Z., Liu G., Wang F., Ju L. and Zhang T. (2009)., Saccharomycopsisfibuligera and its applications in biotechnology., Biotechnol. Adv., 27, 423-431.
  31. Sanchez O.J. and Cardona C.A. (2008)., Trends in biotechnological production of fuel ethanol from different feedstocks., Bioresour. Technol., 99, 5270-5295.
  32. Gurung N., Ray S., Bose S. and Rai V. (2013)., A broader view: Microbial enzymes and their relevance in industries, medicine and beyond., Biomed. Res. Int., 1-18. doi:10.1155/2013/329121.
  33. Hofemeister J., Kurtz A, Borriss R. and Knowles J. (1986)., The beta-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis., Gene., 49, 177-187.
  34. Vaillant F., Millan A., Dornier M. et al. (2001)., Strategy for economical optimization of the clarification of pulpy fruit juices using crossflow microfiltration., J. Food. Eng., 48, 83–90.
  35. Sivaramakrishnan S., Gangadharan D., Nampoothiri K.M. et al. (2006)., α-Amylases from microbial sources—an overview on recent developments., Food Technol. Biotechnol., 44(2), 173–184.
  36. Kumar S. (2015)., Role of enzymes in fruit juice processing and its quality enhancement., Adv. Appl. Sci. Res., 6 (6), 114–124.
  37. Garg G., Singh A., Kaur A. et al. (2016)., Microbial pectinases: an ecofriendly tool of nature for industries., 3 Biotech., 6(1), 47-59.
  38. Rodriguez Sanoja R., Morlon-Guyot J., Jore J., Pintado J., Juge N. and Guyot J.P. (2000)., Comparative characterization of complete and truncated forms of Lactobacillus amylovorus .-amylase and role of the C-terminal direct repeats in raw-starch binding., Appl. Environ. Microbiol., 66, 3350-6.
  39. Hmidet N., El-Hadj Ali N., Haddar A., Kanoun S., Alya S., Nasri M. (2009)., Alkaline proteases and thermostable -amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive., Biochemical Engineering Journal, 47, 71–79.
  40. Mitidieri S., Souza Martinelli A.H., Schrank A. and Vainstein M.H. (2006)., Enzymatic detergent formulation containing amylase from Aspergillus niger: A comparative study with commercial detergent formulations., Bioresour, Technol., 97, 1217-1224.
  41. Olsen H.S. and Falholt P. (1998)., The role of enzymes in modern detergency., J Surfactants Deterg, 1(4), 555–567
  42. Keshwani A., Malhotra B. and Kharkwal H. (2015)., Natural polymer based detergents for stain removal., World J. Pharm. Pharm. Sci., 4(4), 490-508.
  43. Novozyme (2013)., Enzyme at work., http:// novozymes.com/en/about-us/brochures/Documents /Enzymes_at_work.pdf.
  44. Kuhad R.C., Gupta R. and Singh A. (2011)., Microbial cellulases and their industrial applications., Enzyme Res., doi:10.4061/2011/280696.
  45. Bruinenberg P., Hulst A., Faber A. and Voogd R. (1996)., A process for surface sizing or coating of paper., European patent application., EP0690170A1.
  46. Kuddus M. and Roohi (2010)., Microbial cold-active α-amylases: From fundamentals to recent developments., Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology., 1265-76.
  47. Mobini-Dehkordi M. and Javan F.A. (2012)., Application of alpha-amylase in biotechnology., J. Biol. Today
  48. Aiyer P.V. (2005)., Amylases and their applications., African Journal of Biotechnology, 4(13), 1525-1529.
  49. Kirk O., Borchert T.V. and Fuglsang C.C. (2002)., Industrial enzyme applications., Curr. Opin. Biotechnol., 13, 345-351.
  50. Marcher D., Hagen H.A. and Castelli S. (1993)., Entschlichten mit enzyme., ITB Veredlung, 39, 20-32.
  51. Marc J.E., van der Maarel C., Joost B.V., Uitdehaag C.M., Leemhuis H. and Dijkhuizen L. (2002)., Properties and applications of starch-converting enzymes of the α-amylase family., J. Biotechnology., 94(2), 137-155.
  52. Giri N.Y., Mohan A.R., Rao L.V. and Rao C.P. (1990)., Immobilization of aamylase complex in detection of higher oligosaccharides on paper., Curr. Sci., 59, 1339-40.
  53. Kalishwaralal K., Gopalram S., Vaidyanathan R., Deepak V., Pandian S.R.K. and Gurunathan S. (2010)., Optimization of α-amylase production for the green synthesis of gold nanoparticles., Colloid. Surf. B. Interf., 77, 174-180. 10.1016/j.colsurfb.2010.01.018.