International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

DNA-Based Characterization of Flesh Flies (Diptera: Sarcophagidae)

Author Affiliations

  • 1Govt Degree College, Kaushambi, Uttar Pradesh, India

Int. Res. J. Biological Sci., Volume 5, Issue (10), Pages 35-39, October,10 (2016)

Abstract

The members belonging to the family Sarcophagidae includes species of medically, veterinary and forensic importance. Many studies have been carried out on the cytogenetics and biochemical genetics of these flies; however, very little work has been carried out using DNA based methods for their molecular characterization. Therefore, in the present study amplification of Cytochrome b gene was performed among five sarcophagids viz., Sarcophaga knabi, S. albiceps, S. dux, S. argyrostoma and S. ruficornis with a view to unravel the genetic relationship among these Indian flesh flies. DNA sequence was analysed using MEGA 4 software. Phylogenetic analysis was also performed which is in congruence with the results found earlier by using COI gene. The result shows the reliability of Cyt b gene as a diagnostic marker for the genetic study of these flesh flies.

References

  1. Zumpt F. (1965)., Myiasis in man and animals in the old world., Butterworth, London.
  2. Gordon R.M. and Lavoipierre M.M.J. (1962)., Entomology for students of medicine., Blackwell Scientific Publications, Oxford.
  3. Greenberg B. (1973)., Flies and Disease., Biology and Disease Transmission. Vol. 2. Princeton University Press, Princeton, New Jersey.
  4. Catts E.P. and Goff M.L. (1992)., Forensic entomology in criminal investigations., Annu. Rev. Entomol., 37, 253-272.
  5. Wells J.D., Pape T. and Sperling F.A.H. (2001)., DNA based identification and molecular systematics of forensically important Sarcophagidae (Diptera)., J. Forensic Sci., 46, 1098-1102.
  6. Amendt J., Krettek R. and Zehner R. (2004)., Forensic entomology., Naturwissenschaften, 91, 51-65.
  7. Carvalho C.J.B. and Mello-Patiu C.A. (2008)., Key to the adults of the most common forensic species of Diptera in South America., Rev. Bras. Entomol., 52, 390-406.
  8. Giroux M., Pape T. and Wheeler T.A. (2010)., Towards a phylogeny of the flesh flies (Diptera: Sarcophagidae): morphology and phylogenetic implications of the acrophallus in the subfamily Sarcophaginae., Zool. J. Linn. Soc., 158, 740-778.
  9. Kaul D., Chaturvedi R., Gaur P. and Tewari R.R. (1978)., Cytogenetics of the genus Parasarcophaga (Sarcophagidae: Diptera)., Chromosoma, 68, 73-82.
  10. Kaul D., Tewari R.R. and Gaur P. (1981)., The chromosomes of sarcophagid flies., La Kromosomo II , 24, 697-706.
  11. Kaul D., Shinonaga S., Agrawal U.R., Kurahashi H., Tewari R.R. and Thakur S. (1994)., A study of isozyme patterns in the flesh fly Sarcophaga amplicercus Shinonaga et Tumrasvin (Diptera :Sarcophagidae)., Jpn. J. Sanit. Zool., 45, 303-309.
  12. Kaul D., Shinonaga S., Tewari R.R., Kurahashi H., Agrawal U.R. and Pradhan S.C. (1994)., Electrophoretic comparisons of isozymes among populations of flesh fly Sarcophaga pattoni Senior-White (Diptera : Sarcophagidae)., Jpn. J. Sanit. Zool., 45, 311-316.
  13. Bajpai N. and Tewari R.R. (2010)., Mitochondrial DNA sequence based phylogenetic relationship among flesh flies of the genus Sarcophaga (Sarcophagidae: Diptera)., J. Genet., 89, 51-54.
  14. Bajpai N. and Tewari R.R. (2012)., Genetic relationship of flesh flies of the genus Sarcophaga using mitochondrial cytochrome oxidase subunits (Sarcophagidae: Diptera)., Int. J. Pharma and Biosciences, 3, 521-525.
  15. Sharma M., Singh D. and Sharma A.K. (2014)., Identification of three forensically important Indian species of flesh flies (Diptera: Sarcophagidae) based on cytochrome oxidase I gene., Indian Journal of Forensic Medicine and Toxicology, 8, 12-16.
  16. Sharma M., Singh D. and Sharma A.K. (2015)., Mitochondrial DNA based identification of forensically important Indian flesh flies., Forensic Sci. Int., 247, 1-6.
  17. Sharma M. Singh D. and Sharma A.K. (2015)., Molecular identification of two forensically important Indian flesh flies (Diptera: Sarcophagidae)., Int. J. of Advanced Research in Science, Engineering and Technology, 2, 814-818.
  18. Amorim J.A., Souza C.M. and Thyssen P.J. (2014)., Molecular characterization of Peckia (Patonella) intermutans (Walker 1861) (Diptera: Sarcophagidae) based on the partial sequence of the mitochondrial cytochrome oxidase I gene., J. Forensics Res., 5, 3.
  19. Zehner R., Amendt J., Schutt S., Sauer J., Krettek R. and Povolny D. (2004)., Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae)., Int. J. Legal Med., 118, 245-247.
  20. Song Z.K., Wang X.Z. and Liang G.Q. (2008)., Molecular evolution and phylogenetic utility of the Internal Transcribed Spacer 2 (ITS 2) in Calyptratae (Diptera: Brachycera)., J. Mol. Evol., 67, 448-464.
  21. Song Z.K., Wang X.Z. and Liang G.Q. (2008)., Phylogenetic relationships among 15 sarcophagid fly species (Diptera: Sarcophagidae) based on partial sequences of mitochondrial cytochrome b and cytochrome oxidase subunit I genes., Acta Entomologica Sinica, 51, 298-306.
  22. Hall M.J.R., Adams Z.J.O., Wyatt N.P., Testa J.M., Edge W., Nikolausz M., Farkas R. and Ready P.D. (2009)., Morphological and mitochondrial DNA characters for identification and phylogenetic analysis of the myiasis-causing flesh fly Wohlfahrtia magnifica and its relatives, with a description of Wohlfahrtia monegrosensis sp. N. Wyatt & Hall., Med. Vet. Entomol., 23, 59-71.
  23. Meiklejohn K.A., Wallman J.F. and Dowton M. (2011)., DNA-based identification of forensically important Australian Sarcophagidae (Diptera)., Int. J. Legal Med. DOI 10.1007/s00414-009-0395-y.
  24. Tan S.H., Rizman-Idid M., Mohd-Aris E., Kurahashi H. and Mohamed Z. (2010)., DNA-based characterization and classification of forensically important flesh flies (Diptera: Sarcophagidae) in Malaysia., Forensic Sci. Int., 199, 43-49.
  25. Guo Y.D., Cai J.F., Xiong F., Wang H.J. et al. (2012)., The utility of mitochondrial DNA fragments for genetic identification of forensically important sarccophagid flies (Diptera: Sarcophagidae) in China., Trop. Biomed., 29, 51-60.
  26. Napoleao K.S., Mello-Patiu C.A., Oliveira-Costa J., Takiya D.M., Silva R. and Moura-Neto R.S. (2015)., DNA-based identification of forensically important species of Sarcophagidae (Insecta: Diptera) from Rio de Janeiro, Brazil., Genetics and Molecular Research, 15, 1-7.
  27. Otranto D., Milillo P., Traversa D. and Colwell D.D. (2005)., Morphological variability and genetic identity in Rhinoestrus spp. causing horse nasal myiasis., Med. Vet. Entomol., 19, 96-100.
  28. Kent R.J., Harrington L.C. and Norris D.E. (2007)., Genetic differences between Culex pipiens f. Molestus and Culex pipiens pipiens (Diptera:Culicidae) in New York., J. Med. Entomol., 44, 50-59.
  29. Marquez J.G., Cummings M.A. and Krafsur E.S. (2007)., Phylogeography of stable fly (Diptera: Muscidae) estimated by diversity at ribosomal 16S and Cytochrome oxidase I mitochondrial genes., J. Med. Entomol., 44, 998-1008.
  30. Zapata M.A., Cienfuegos A.V., Quiros O.I., Quifiones M.L., Luckhart S. and Correa M.M. (2007)., Discrimination of seven Anopheles species from San Pedro de Uraba, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of its sequences., Am. J. Trop. Med. Hyg., 77, 67-72.
  31. Desmyter S. and Gosselin M. (2009)., CO I sequence variability between Chrysomyinae of forensic interest., Forensic Sci. Int., 3, 89-95.
  32. Tan S.H., Mohd-Aris E., Surin J., Omar B., Kurahashi H. and Mohamed Z. (2009)., Sequence variation in the cytochrome oxidase subunit I and II genes of two commonly found blow fly species, Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) in Malaysia., Tropical Biomed, 26, 173-181.
  33. Maniatis T., Fritsch E.F. and Sambrook J. (1982)., Molecular Cloning: a laboratory manual, Cold Spring Harbor Laboratory., New York.
  34. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. and Higgins D.G. (1997)., The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools., Nucl. Acids Res., 24, 4876-4882.
  35. Tamura K., Dudley J., Nei M. and Kumar S. (2007)., MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0., Mol. Biol. Evol., 24, 1596-1599.
  36. Posada D. and Crandall K.A. (1998)., MODELTEST: testing the model of DNA substitution., Bioinformatics, 14, 817-818.
  37. Pond S.L.K. and Muse S.V. (2005)., HyPhy: hypothesis testing using phylogenies., Bioinformatics, 21, 676-679.
  38. Kimura M. (1981)., Estimation of evolutionary distances between homologous nucleotide sequences., Proceedings of the National Academy of Sciences, U.S.A., 78, 454-458.
  39. Moritz C., Dowling T.E. and Brown W.M. (1987)., Evolution of animal mitochondrial DNA: relevance for population biology and systematics., Ann. Rev. Ecol. Syst., 18, 269-292.
  40. Simon C., Frati F., Beckenbach A., Crespi B., Liu H. and Flook P. (1994)., Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers., Ann. Entoml. Soc. Am., 87, 651–701.
  41. Bernasconi M.V., Valsangiacomo C., Piffaretti J.C. and Ward P.I. (2000)., Phylogenetic relationships among Muscoidea (Diptera: Calyptratae) based on mitochondrial DNA sequences., Insect Mol. Biol., 9, 67-74.
  42. Scarpassa V.M. and Conn J.E. (2006)., Molecular differentiation in natural populations of Anopheles oswaldoi sensu lato (Diptera: Culicidae) from the Brazilian Amazon region, using sequences of the COI gene from mitochondrial DNA., Genet. Mol. Res., 5, 493–502.
  43. Zhang J. (2000)., Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes., J. Mol. Evol., 50, 56-68.
  44. Keller I., Bensasson D. and Nichols R.A. (2007)., Transition-transversion bias is not universal: A counter example from grasshopper pseudogenes., PLoS Genet. 3: e22.doi:10.1371/journal.pgen.0030022.
  45. Wolstenholme D.R. and Clary D.O. (1985)., Sequence evolution of Drosophila mitochondrial DNA., Genetics, 109, 725-744.
  46. Segura M.D., Callejas C., Fernandez M.P. and Ochando M.D. (2006)., New contributions towards the understanding of phylogenetic relationships among economically important fruit flies (Diptera: Tephritidae)., Bull. Entomol. Res., 96, 279-288.
  47. Hall M.J.R., Edge W., Testa J.M., Adams Z.J.O. and Ready P.D. (2001)., Old World screwworm fly, Chrysomya bezziana, occurs as two geographical races., Med. Vet. Entomol., 15, 393–402.
  48. Wallman J.F. and Donnellan S.C. (2001)., The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southern Australia., Forensic Sci. Int., 120, 60–67.
  49. Swofford D.L., Olsen G.J., Waddell P.J. and Hillis D.M. (1996)., Phylogenetic inference in: Molecular Systematics (ed. Hillis, D. M. and Moritz, C.)., 407-514, Sunderland, Massachusetts, Sinauer Associates.
  50. Agrawal U.R. (1993)., Allozyme variation at acid phosphatase loci in three populations of Parasarcophaga ruficornis (Sarcophagidae: Diptera)., Nat. Acad. Sci. Lett., 16, 115-118.