Studies on β-Hemolysin producing Aeromonas hydrophila MTCC 646 source Antibacterial activity

Ananth kumar.Y1*, Nirmal Kumar.N2 and Pothiraj,R3

1Department of Zoology, St.Xavier's College, Palayamkottai, Tirunelveli, Tamil Nadu, INDIA
2Department of Botany, VHNSN College, Virudhunagar, Tamil Nadu, INDIA
3Department of Bioengineering, VHNSN College, Virudhunagar, Tamil Nadu, INDIA

Available online at: www.isca.in, www.isca.me
Received 27th June 2013, revised 30th October 2014, accepted 5th January 2015

Abstract

Aeromonas hydrophila MTCC646 was purchased from Institute of microbial Technology (IMTECH) Chandigarh, and it was investigated for the hemolytic, Proteolytic and antibacterial activities. The ability of the Aeromonas hydrophila MTCC646 to exhibit the above activities was confirmed by the results of blood agar plates, Muller Hinton Agar (MHA) plates seeded with the bacterial pathogens.

Keywords: Aeromonas hydrophila MTCC646, antibacterial activity, hemolysin.

Introduction

Aeromonas hydrophila MTCC 646 is a gram-negative, nonsporeforming, rod shaped bacteria in the family of Aeromonadaceae. Aeromonas hydrophila can survive in aerobic and anaerobic environments. It causes infections in marine, fresh water and ornamental fish1,2. Sea foods have been contaminated (37%) by Aeromonas from the west coastal region of southern India3.

Aeromonas hydrophila was isolated from extra intestinal specimens from the coastal region of Southern Karnataka and it can cause serious infections among immune compromised as well as immune competent individuals4. Aeromonas hydrophila CRI14 produces siderophores. Although A. hydrophila CRI14 produced siderophores, production speed was not in accordance with its growth in fish sera. Simultaneously A. hydrophila protease compensates its adequacy of siderophore for iron5.

Haemolysin, protease and extracellular polysaccharides (EPS) from pathogenic Aeromonas hydrophila An4 shows antibacterial activity against some bacterial pathogens of marine ecosystem. Haemolysins are one the important bacterial virulence factors6. Extracellular polysaccharides also play a major role in virulence of pathogenic bacteria and it mediates the interaction between pathogenic bacteria and their environment through adhesion to the host7.

Nile tilapia is a popular fresh water aquaculture species in the Philippines. The study focused on the bacteriological examination of Nile tilapia (Oreochromis niloticus) during disease outbreaks in various aquaculture farms shows ampicillin resistant Aeromonas hydrophila. Consistent isolation of A. hydrophila from various tissues of diseased Nile tilapia during disease outbreaks shows a recurring septicemia8.

Aeromonas hydrophila has been isolated from wounds of five species of brackish water fish including species such as Plotosus anguillaries, Lates calcarifer, Epinephelus megachire, Laboe rohita, and Serotherodon nilotica9. Aerolysin binds to specific glycoprotein receptors on the surface of eukaryotic cells before inserting into the lipid bilayer and forming holes. Such aerolysin and haemolysin genes were detected in A. hydrophila strains isolated from infected Koi carp (Cyprinus carpio)10.

The expression of extracellular proteinases and haemolysins under altered atmospheres were studied well and optimal conditions for the expression were determined11. More widespread recognition of the prevalence and pathogenic significance of this species have stimulated a number of investigations of the ability of A. hydrophila to grow under modern commercial refrigerated storage conditions12,13.

Mass mortality in Misgurnus anguillicaudatus (Korean cyprinid loach) was caused by Aeromonas hydrophila14. Additionally it was proved that isolated Aeromonas hydrophila containing the tetE gene (i.e., Tetracycline resistant gene) exists in Korean aquaculture system and has virulence15. In Kolkata the multi-drug resistant Aeromonas hydrophila was isolated from surface waters. The Aeromonas hydrophila has been examined for their enteropathogenic potential in the sealed-adult –Mouse model using live bacterial cells. Exposure of Mouse intestine to the isolates of Aeromonas hydrophila caused epithelial damage of villi associated with architectural distortion of polymorphonuclear cells extending through the mucus15.

The activity of some β-lactum antibiotics upon 20 strains of Aeromonas hydrophila and some properties of their β-lactamases has been studied. The results show that resistance of
Aeromonas hydrophila to β-lactum antibiotics. The high degree of resistance to benzyl penicillin and lower resistance to ampicillin and cephalexin was observed10-13. Aeromonas hydrophila was present in faces of buffaloes14. Aeromonas hydrophila was found to produce haemolytic and proteolytic exotoxin lethal to Tilapia nilotica, as well as heat stable unknown virulent factors that were responsible for 20% mortality. The lethality of ECP was decreased by heating and completely inactivated by boiling at 100°C for 10 mins15. Aeromonas hydrophila was isolated from (Tamilnadu) stool samples of children with acute diarrhea shows multiple antibiotic resistance character.

Some strain of Aeromonas hydrophila were isolated from infected skin from common fresh water fish in Bangladesh and tested for enterotoxin production, hemolysin production and proved that strains have resistant to ampicillin16. Aeromonas hydrophila is also reported as to produce pathogenesis in Gold fish (Carrassius auratus) and Koi (Cyprinus carpio)17.

The formation of extracellular haemolysin by Aeromonas hydrophila in relation to protease and staphyloclitic enzyme was well studied18. Isolation rates of Aeromonas hydrophila from stool samples of symptomatic and asymptomatic individuals were examined for several common enteric media. Sheep blood agar with 10μg of ampicillin per ml, preceded by overnight enrichment in alkaline peptone water, yielded 2.6 times the number of isolates as the other media examined for isolation of Aeromonas hydrophila from humans19. The cytopathogenic response to the α-hemolysin was reversible, whereas cells treated with small amounts of the β-hemolysin for only 1 minute invariably died within a few hours. Thus, the two hemolysins from Aeromonas hydrophila, despite dissimilarities in their interactions with cultured cells20.

Material and Methods

Source of organism: Aeromonas hydrophila MTCC 646 was purchased from Institute of Microbial Technology (IMTECH), Chandigarh.

Detection of Proteolytic activity: Aeromonas hydrophila MTCC646 spot was inoculated on casein agar media and stab inoculated in 10% gelatin agar in test tube. The proteolytic activities were observed in the form of zone clearance and liquefaction after 48 hours of incubation.

Detection of Hemolytic activity: Hemolytic activity was isolated by streaking the Aeromonas hydrophila MTCC 646 on blood agar base plate supplemented with 7% human blood. The Blood should be aseptically transferred to the media. After sterilizing the media, the blood is added, in order to avoid denaturation.

Determination of Antimicrobial Activity: Aeromonas hydrophila MTCC 646 was cultured in 100ml Nutrient Broth (NB) medium at room temperature for 5 days in a rotary shaker. After five days the culture medium was centrifuged at 8000 rpm for 8 minutes and filtrate was screened for antimicrobial activity by agar- diffusion technique on Muller Hinton Agar media (MHA) that was previously seeded with test pathogens. The plates were incubated for 12hrs. Formation of any zone of inhibition was recorded21. The test pathogens as follows; Klebsiella pneumonia, Bacillus subtilis, Streptococcus aureus, Salmonella typhi, staphylococcus aureus, Pseudomonas Species

Results and Discussion

In the proteolytic activity Aeromonas hydrophila MTCC 646 was spot inoculated on casein agar media and stab was inoculated in 10% gelatin agar in test tube, does not from clearance of zone and liquefaction. This shows that Aeromonas hydrophila MTCC 646 does not produce protease extracellularly. Hemolytic proteins are commonly isolated from pathogenic bacteria and β-hemolysin is one of the important bacterial virulence factors. Hemolysin and its related proteins containing cystathionine β synthase (CBS) domains are bacterial toxins that function by assembling identical subunits into a membrane-spanning pore22. It has been suggested that proteolytic enzymes of fish pathogen, Aeromonas hydrophila, play an important role in causing massive tissue damage in the host which may facilitate establishment of infection. In Hemolytic activity Aeromonas hydrophila strain MTCC 646 interestingly demonstrated a very clear β-hemolysin in the form of clearance zone along the streak on blood agar plate within 24 hours of incubation at room temperature (figure-1). We have demonstrated the hemolytic activity of the Aeromonas hydrophila MTCC 646 by using blood agar supplemented with 7% human blood. In antimicrobial activity shows that, filtrate obtained from NB inoculated with Aeromonas hydrophila MTCC 646 has antimicrobial activity against some test organisms such as Klebsiella pneumonia, Bacillus subtilis Streptococcus aureus, Salmonella typhi, staphylococcus aureus, Pseudomonas Species. Attention has been given to the production of hemolysin by Aeromonas hydrophila, and it regarded as indication of pathogenic potential, though non-haemolytic aermonads have also been considered as human pathogen23. We have investigated that the Aeromonas hydrophila MTCC 646 for proteolytic activity. The results show that the strain Aeromonas hydrophila MTCC 646 does not exhibit proteolytic activity. In previous study24 shows that Aeromonas hydrophila An4 have antibacterial activity against marine bacterial species.

Conclusion

The present study concluded that, the Aeromonas hydrophila MTCC 646 shows antibacterial activity against some bacterial pathogens. It suggested that further studies are required to determine the antimicrobial activity of Aeromonas hydrophila MTCC 646.
Reference

1. Ramasamy harikrishnan, Chellam Balasundaram, Manchul kim, Ju-sang kim and Moon Soo Heo., Effective administration route of Azadirachtin and its impact on hematological and Biochemical parameters in gold fish (carassius Auratus) infected with Aeromonas hydrophila, Bull vet Inst pulawy, 613-619 (2009)

10. Uma A., Rebecca G., Meena S. and Saravanabava K., PCR detection of putative Aerolysin and haemolysin genes in an Aeromonas hydrophila isolate from infected koi carp (Cyprinus carpio), Tamilnadu J. veterinary and Animal Sciences, 6(1), 31-33 (2010)

17. Andrea Belem Costa and Jose Eurico Possebon Cyrino, Antibiotic resistance of Aeromonas hydrophila isolated from Piaractus Mesopotamicus (Holmberg, 1887) and Oreochromis niloticus (Linnaeus, 1758), Sci. Agric. (Piracicaba Braz), 63, 281-284 (2006)

