Protective Effect of Curcumin on Diethanolamine-Induced Toxic Effects on Human Spermatozoa: An in Vitro Study

Panchal Sneha and Verma Ramtej*
Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad-380009, INDIA

Available online at: www.isca.in, www.isca.me
Received 20th January 2014, revised 28th February 2014, accepted 28th March 2014

Abstract
Curcumin is a yellow pigment from Curcuma longa which has desirable preventive or putative therapeutic properties. In this study protective effect of curcumin on diethanolamine-induced toxicity on human spermatozoa in in vitro condition was investigated. For this study samples were collected from normal healthy donors. After liquefaction, samples were used for preparation of sperm suspension to evaluate sperm motility, sperm viability and sperm morphology. Statistical analysis was performed using analysis of variance (ANOVA) followed by Tukey’s test and the level of significance was accepted with p<0.05. When sperm suspension was treated with diethanolamine (300 µg/ml) it caused significant decrease in sperm motility and sperm viability as compared to control. Treatment also caused significantly increased different kinds of sperm morphological abnormalities as compared to control. Addition of different concentrations (10-40 µg/ml) of curcumin to sperm suspension along with diethanolamine caused significant increase in sperm motility and sperm viability as compared to treated which was time-dependent as well as concentration-dependent. As compared to treated, concentration-dependent decrease in various kinds of morphological abnormalities were also observed. This findings clearly indicate that curcumin ameliorates diethanolamine-induced spermatotoxic effect on human spermatozoa.

Keywords: Diethanolamine (DEA), curcumin, spermatozoa, motility, viability, morphology.

Introduction
Diethanolamine (DEA) is an alkanolamine which unites both the properties of amines and alcohol. DEA is widely used as industrial chemicals1, agricultural chemicals, metal working fluids and personal care products like cosmetics2,3, shampoos and hair conditioners. It is used in pharmaceutical industries as buffer and stabilizer for certain drugs4 and also used as raw materials in the production of some drugs. The most common dermal exposure to DEA in human beings are from consumer products such as soaps, shampoos, cosmetics, detergents and other surfactants that contain DEA or fatty acid conjugates of DEA5. Occupational exposure to DEA occurs by the use of lubricating liquids in industrial processes5. Human exposure to DEA is also possible through cigarette smoking6.

Approximately 800,000 workers are potentially exposed to DEA per year, estimated by the National Institute for Occupational Safety and Health6. DEA is readily absorbed through skin. It can be incorporated into phospholipids and can inhibit synthesis of phospholipid derivatives of choline and ethanolamine7. It has been previously reported that DEA alters cell proliferation, choline metabolism and increase rate of apoptosis in in vitro condition8. DEA also alters DNA methylation in mouse hepatocytes9. Oral and dermal exposure to DEA caused alterations in rodent testis10-11.

Herbal medicines have been used from ancient times to cure large number of diseases. About 70-80% of the world populations, mainly in developing countries use herbal medicine for primary health care12, because these herbal drugs have no side effect besides being cheap and easily locally available13. Curcumin is a polyphenol major chemical component of turmeric power, produced from the rhizome of the plant Curcuma longa14. Curcumin possesses wide variety of pharmacological activities such as anti-inflammatory15, anti-platelet16, antioxidant17, cancer chemopreventing18, anti cancer19, antimutagenic20 and anti-HIV21. The most important feature of curcumin is that it has no side effects and therapeutic agent with multiple beneficial functions22. Protective effect of curcumin on aflatoxin-induced lipid peroxidation in testis of mice and toxicity in mice spermatozoa have also been reported23,24. Deviet et al.25 also reported that curcumin shows protective role against chromium-induced genotoxicity in germ cells of male mice.

Infertility is a widespread problem. The semen of the average man today has half the number of sperm with poorer quality, than 50 years ago. Hence, in present investigation, studies were carried out to evaluate the protective effect of curcumin on DEA-induced spermatotoxic effect on human spermatozoa.

Material and Methods
Semen samples were obtained in vials from 10 normal healthy adult volunteers of age 25-30 years after 2 days of sexual abstinence and brought to the laboratory in cold condition for semen analysis. Semen analysis was done after liquefaction. For
this study semen samples with sperm counts above 50 million/ml with normal morphology, rapid, linear, progressive motility and viability above 50% were considered. After analysis, semen samples were used for sperm suspension preparation in normal saline (0.9% NaCl). DEA and curcumin were also prepared in normal saline (0.9% NaCl).

Study Design: For evaluation of toxic effects of DEA on human spermatozoa following sets of tubes were prepared. i. Control tubes containing 0.5 mL sperm suspension, ii. DEA-treated tubes containing 0.5 mL sperm suspension and 300 µg/mL DEA, iii. Antidote control tubes containing 0.5 mL sperm suspension and 40 µg/mLcurcumin, iv. DEA and curcumin-treated tubes containing 0.5 mL sperm suspension, 300 µg/mL DEA and 10-40 µg/mLcurcumin.

In each tubes final volume was made upto 1 mL with addition of normal saline and incubated at 37°C for 60 min to evaluate sperm motility, sperm viability and sperm morphological abnormalities.

Sperm motility: Sperm motility was measured at different time interval (0, 15, 30, 45, 60) by counting both motile and non-motile spermatozoa in at least 10 separate randomly selected fields. Percent motility was calculated by following formula:

\[
\% \text{ Motility} = \frac{\text{Number of motile spermatozoa} \times 100}{\text{Total number of spermatozoa}}
\]

Sperm viability: Sperm viability at different time interval (0, 15, 30, 45, 60) was measured by counting live and dead spermatozoa after trypan blue staining in at least 10 separate randomly selected fields. Percent viability was calculated by following formula:

\[
\% \text{ Viability} = \frac{\text{Number of live spermatozoa} \times 100}{\text{Total number of spermatozoa}}
\]

Sperm morphology: Sperm morphology was determined by using Giemsa stain. Total 150 spermatozoa were scored per slide. Percent sperm morphology abnormalities were calculated by following formula.

\[
\% \text{ Abnormal sperm} = \frac{\text{Number of abnormal spermatozoa} \times 100}{\text{Total number of spermatozoa}}
\]

Statistical Analysis: Statistical analysis was done by analysis of variance (ANOVA) followed by Tukey’s test using GraphPad prism software. Data are expressed as the mean ± S.E.M. The level of significance was accepted with * p<0.05. Pearson’s correlation analysis was used to determine the correlation between control and treated.

Results and Discussion

Addition of DEA to sperm suspension caused significant (p<0.05) decrease in sperm motility as compared to control in *in vitro* condition. This effect was time-dependent (r=-0.9157) (table 1). DEA also caused significant, time-dependent (r=-0.9276) decrease in sperm viability as compared to control (table 2). DEA treated spermatozoa showed different kinds of morphological abnormalities such as swollen head, head-neck, bent neck, swollen mid piece, decapitation, coiled tail, tail deformities, head-head agglutination, tail-tail agglutination and head-tail agglutination as compared to control at 60 min (table 3). DEA is known to alter phospholipid metabolism, structure and function. Phospholipids are most representative component of sperm cell membrane. It has been reported that DEA caused structural and functional changes in mitochondria by altering phospholipid metabolism. Spermatozoa are rich in mitochondria because they need constant supply of energy for motility. Any alteration in mitochondria caused decrease in sperm motility. It has been previously mentioned that DEA alter the synthesis of phospholipid derivatives of choline and ethanolamine which are essential for lipid metabolism. DEA competitively inhibits the cellular uptake of choline in *in vitro* condition.

Floyd *et al.* also reported that choline deficiency increased generation of free radicals and also increased susceptibility to oxidative damage which may induce DNA damage and alters gene expression. Oxidative damage leads to ultimate death of the cell and decrease the sperm motility. So oxidative stress is one major factor that affect sperm motility and affect fertility status. Alterations in phospholipids affect the membrane integrity and its nature of semi-permeability. When the spermatozoa were stained with trypan blue, it showed large number of dead spermatozoa due to alterations in membrane integrity. Another major factor for loss of sperm motility is loss of membrane permeability. DEA also caused various kinds of sperm morphological abnormalities by causing DNA damage through oxidative stress. DNA and phospholipids are main major components target for free radicals. Alterations in membrane integrity also affect the sperm morphology. Thus DEA affect sperm function and structure and eventually fertility status.

Addition of curcumin (10-40 µg/ml) along with DEA significantly ameliorates DEA-induced reduction in sperm motility as compared to treated. This ameliorative effect was dose-dependent (r=0.9082, 8346, 833, 8376) and time-dependent (r=0.9924, -0.9982, -0.9939, -0.9919) (table 1). Similarly, curcumin also ameliorates DEA-induced reduction in sperm viability as compared to treated. This ameliorative effect was dose-dependent (r=0.9179, 0.8328, 0.8191, 0.825) and time-dependent (r=0.9912, -0.9746, -0.9876 -0.9936) (table 2). Curcumin also significantly decreased sperm morphological abnormalities as compared to treated (r=0.9979) (table 3). There is no difference between control and antidote control in sperm motility, sperm viability and sperm morphology (Table 1,2,3). Antioxidants are the major defence factors against oxidative stress induced by free radicals. Curcumin is an effective antioxidant which has unique conjugated structure,
includes two methoxylated phenols and enol form of diketone. This unique structure of curcumin shows typical radical trapping ability as a chain-breaking antioxidant. By this trapping ability curcumin protect spermatozoa from free radicals and increase motility and viability. Chan and Wu reported that curcumin showed protective effect on methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells. Curcumin may also protect spermatozoa from morphological abnormalities by preventing oxidative DNA damage.

Table-1

<table>
<thead>
<tr>
<th>DEA concentration (µg/ml)</th>
<th>Curcumin (µg/ml)</th>
<th>Duration of treatment (min)</th>
<th>r value as per duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1. Control</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 (Antidote control)</td>
<td>40</td>
<td>75.96±1.24</td>
<td>73.96±1.32</td>
</tr>
<tr>
<td>2. Diethanolamine-treated</td>
<td></td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>56.14±0.82</td>
<td>54.02±1.19</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>60.25±0.83</td>
<td>57.12±0.76</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>64.12±1.11</td>
<td>61.88±0.63</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>69.20±0.92</td>
<td>65.84±0.73</td>
</tr>
</tbody>
</table>

Sperm motility at 0 min was 82.44%. Values are mean±S.E.M., n=10, *p<0.05, as compared to control, †p<0.05, as compared to toxin-treated, r value shows Pearson correlation. (Horizontal is concentration-dependent and vertical is time-dependent).

Table-2

<table>
<thead>
<tr>
<th>DEA Concentration (µg/ml)</th>
<th>Curcumin (µg/ml)</th>
<th>Duration of treatment (min)</th>
<th>r value as per concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1. Control</td>
<td></td>
<td>0</td>
<td>84.00±0.90</td>
</tr>
<tr>
<td>0 (Antidote Control)</td>
<td>40</td>
<td>81.65±0.72</td>
<td>78.63±0.69</td>
</tr>
<tr>
<td>2. Diethanolamine-treated</td>
<td></td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>59.08±0.79</td>
<td>57.38±0.61</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>61.74±0.95</td>
<td>60.86±0.86</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>67.23±0.92</td>
<td>63.43±1.00</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>73.76±0.98</td>
<td>70.33±0.93</td>
</tr>
</tbody>
</table>

Sperm viability at 0 min was 86.32%. Values are mean±S.E.M., n=10, *p<0.05, as compared to control, †p<0.05, as compared to toxin-treated, r value shows Pearson correlation. (Horizontal is concentration-dependent and vertical is time-dependent)
Table-3
Ameliorative effect of curcumin on DEA-induced changes in morphology of human spermatozoa in vitro at 60 min

<table>
<thead>
<tr>
<th>DEA Concentration (µg/ml)</th>
<th>Curcumin (µg/ml)</th>
<th>% Various kinds of sperm morphological abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal sperm</td>
</tr>
<tr>
<td>0 control</td>
<td>0</td>
<td>4.88±0.58</td>
</tr>
<tr>
<td>0 Antidote Control</td>
<td>40</td>
<td>5.77±0.44</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>45.56±2.12</td>
</tr>
<tr>
<td>300</td>
<td>10</td>
<td>37.33±1.01</td>
</tr>
<tr>
<td>300</td>
<td>20</td>
<td>26.22±1.55</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
<td>17.11±0.80</td>
</tr>
<tr>
<td>300</td>
<td>40</td>
<td>9.77±0.96</td>
</tr>
</tbody>
</table>

Values are mean ± S.E.M., n=10, “p<0.05, as compared to control, “p<0.05, as compared to toxin-treated, r value of Total sperm morphological abnormality= -0.9979

Conclusion
It can be concluded from this study that DEA cause significant decrease in sperm motility and sperm viability. DEA also caused significant increase in sperm morphological abnormalities and may cause male fertility. Treatments with curcumin along with DEA improve the sperm characteristics and eventually improve the male fertility status. Our findings suggest that it may be possible to use dietary curcumin for prevention of male infertility.

Reference
5. Technology Planning and Management Corporation (TPMC), Report on carcinogens Background Document for Diethanolamine, In National Toxicology Program NIEHS, Durham, NC, NO1ES85421, P. 229 (2002)
6. Hoffmann D., Brunemann K.D., Rivenson A. and Hecht, S.S., N nitrosodiethanolame: analysis, formation in

14. Beevers S. and Huang S., Pharmacological and clinical properties of curcumin, Botanics: Targets and Therapy, 1, 5-18 (2011)

