6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Nucleotide Binding and Oligomerization Domain 1 (NOD1) Receptor in Catla (Catla catla) : Inductive Expression and Down-Stream Signaling in Ligand Stimulation and Bacterial Infections

Author Affiliations

  • 1 Fish Health Management Division, Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, Odisha, INDIA

Int. Res. J. Biological Sci., Volume 2, Issue (3), Pages 55-61, March,10 (2013)


The nucleotide binding oligomerization domain 1 (NOD1) is a cytoplasmic pattern recognition receptor (PRR), and is a member of the NOD-like receptor (NLR) family. It senses various pathogens or their products, and plays an important role in inducing innate immunity. This report describes the identification of NOD1 and its down-stream signaling in the Indian major carp, catla (Catla catla), one of the highly commercially important and extensively cultured freshwater fish species in the Indian subcontinent. The basal expressions of NOD1and its downstream signaling molecule RICK (receptor interacting serine-threonine kinase) were analyzed in gill, liver, kidney, intestine, heart, spleen, brain, eye, muscle, skin and blood of healthy catla fingerlings by quantitative real-time PCR (qRT-PCR) assay, and it showed their wide expression in all tested tissues. Among the tested tissues, highest expression of NOD1 was observed in liver, and RICK in gill. Stimulation with iE-DAP, LPS and poly I:C activated NOD1 receptor signaling resulting in significant (p 0.05) induction of downstream signaling molecule RICK, and the effector molecules IL-1 in the treated fish group as compared to their control. Infection with Aeromonas hydrophila also activated NOD1 receptors signaling. These findings suggest the important role of NOD1 receptor as innate immune gene in fish.


  1. Akira S., Uematsu, S. and Takeuchi O., Pathogen recognition and innate immunity, Cell, 124, 783–801 (2006)
  2. Magnadottir B., Innate immunity of fish (overview), Fish Shellfish Immunol.,20, 137-151 (2006)
  3. Aoki T., Takano T., Santos M.D., Kondo H. and Hirono I., Molecular Innate immunity in Teleost Fish: Review and Future Perspectives, 5th World Fisheries Congress, 263-276 (2008)
  4. Franchi L., Eigenbrod T., Munoz-Planillo R. and Nunez G., The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis, Nature Immunol., 10, 241-247 (2009)
  5. Chen X.C., Zhang M.X. and Zhu X.Y., Engagement of Toll-like receptor 2 on CD4+ T cells facilitates local immune responses in patients with tuberculous pleurisy, J. Infect. Dis., 200, 399–408 (2009)
  6. Wilmanski J., Ocwieja T. and Kobayashi K., NLR proteins: integral members of innate immunity and mediators of inflammatory diseases, J. Leukoc. Biol., 83,13-30 (2008)
  7. Werts C., Girardin S.E. and Philpott D.J., TIR, CARD and PYRIN: three domains for an antimicrobial triad, Cell Death Differ., 13, 798-815 (2006)
  8. Philpott D. and Girardin S., Nod-like receptors: sentinels at host membranes, Current Opinion in Immunology, 22,428-434 (2010)
  9. Chamaillard M., Hashimoto M., Horie Y., Masumoto J., Qiu S., Saab L., Ogura Y., Kawasaki A., Fukase K., Kusumoto S., Valvano M.A., Foster S.J., Mak T.W., Nuñez G. and Inohara N., An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid, Nat. Immunol., 4, 702-707 (2003)
  10. Girardin S.E., Boneca I.G., Carneiro L.A., Antignac A., Jéhanno M., Viala J., Tedin K., Taha M.K., Labigne A., Zähringer U., Coyle A.J., DiStefano P.S., Bertin J., Sansonetti P.J. and Philpott D.J., Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan, Science, 300, 1584-1587 (2003)
  11. Inohara N., Koseki T., Lin J., del Peso L., Lucas P.C., Chen F.F., Ogura Y. and Núñez G., An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways, J. Biol. Chem., 275, 27823-27831 (2000)
  12. Bourhis L., Benko S. and Girardin S., NOD1 and NOD2 in innate immunity and human inflammatory disorders, Biochem. Soc. Trans., 35, 1479-1484 (2007)
  13. Hasegawa M., Fujimoto Y., Lucas P.C., Nakano H., Fukase K., Núñez G. and Inohara N., A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kB activation, EMBO. J., 27, 373-383 (2008)
  14. Hisamatsu T., Suzuki M., Reinecker H.C., Nadeau W.J., McCormick B.A. and Podolsky D.K., CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells, Gastroenterology, 124, 993-1000 (2003)
  15. Hasegawa M., Yamazaki T., Kamada N., Tawaratsumida K.., Kim Y.G., Núñez G. and Inohara N., Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen, J. Immunol.,186,4872–4880 (2011)
  16. Tohno M., Shimazu T., Aso H., Uehara A., Takada H., Kawasaki A., Fujimoto Y., Fukase K., Saito T. and Kitazawa H., Molecular cloning and functional characterization of porcine Nucleotide-binding oligomerization domain-1 (NOD1) recognizing minimum agonists, meso- diaminopimelic acid and mesolanthionine. Mol. Immunol., 45, 1807-1817 (2008)
  17. Laing K.J., Purcell M.K., Winton J.R. and Hansen J.D., A genomic review of the NOD-like receptor family in teleost fish: identification of novel NLR subfamily in Zebrafish, BMC. Evo. Biol., 8, 42 (2008)
  18. Sha Z., Abernathy J.W., Wang S., Li P., Kucuktas H., Liu H., Peatman E. and Liu Z., NOD-like subfamily of the nucleotide-binding domain and leucine-rich repeat containing family receptors and their expression in channel catfish, Dev. Comp. Immunol., 33, 991-999 (2009)
  19. Chen W., Xu Q., Chang M., Nie P. and Peng K., Molecular characterization and expression analysis of nuclear oligomerisation domain proteins NOD1 and NOD2 in grass carp Ctenopharyngodon idella, Fish Shellfish Immunol., 28, 18-29 (2010)
  20. Chang M., Wang T., Nie P., Zou J. and Secombes C.J., Cloning of two rainbow trout nucleotide-binding oligomerisation domain containing 2 (NOD2) splice variants and functional charecterization of the NOD2 effectors domains, Fish Shellfish Immunol., 30, 118-127 (2011)
  21. Swain B., Basu M., Sahoo B.R., Maiti N.K., Routray P., Eknath A.E. and Samanta M., Molecular characterization of nucleotide binding and oligomerization domain (NOD)-2, analysis of its inductive expression and down-stream signaling following ligands exposure and bacterial infection in rohu (Labeo rohita), Dev. Comp. Immunol., 36, 93–103 (2012)
  22. Swain B., Basu M. and Samanta M., Molecular cloning and characterization of nucleotide binding and oligomerization domain-1 (NOD1) receptor in the Indian Major Carp, rohu (Labeo rohita), and analysis of its inductive expression and down-stream signalling molecules following ligands exposure and Gram-negative bacterial infections, Fish Shellfish Immunol., 32, 899-908 (2012)
  23. Hou Q., Yi S., Ding X., Zhang X., Sun Y., Zhang Y., Liu X., Lu D. and Lin H., Differential expression analysis of nuclear oligomerization domain proteins NOD1and NOD2 in orange-spotted grouper (Epinephelus coioides), Fish Shellfish Immunol., 33, 1102-1111 (2012)
  24. Park S.B., Hikima J., Suzuki Y., Ohtani M., Nho S.W., Cha I.S., Jang H.B., Kondo H., Hirono I., Aoki T. and Jung T.S., Molecular cloning and functional analysis of nucleotide-binding oligomerization domain 1 (NOD1) in olive flounder, Paralichthys olivaceus, Dev. Comp. Immunol., 36, 680–687 (2012)
  25. Xie J., Hodgkinson J.W., Katzenback B.A., Kovacevic N. and Belosevic M., Characterization of three Nod-like receptors and their role in antimicrobial responses of goldfish (Carassius auratus L.) macrophages to Aeromonas salmonicida and Mycobacterium marinum, Dev. Comp. Immunol., 39, 180-187 (2013)
  26. Altschul, S.F., Gish W., Miller W., Meyers E.W. and Lipman D.J., Basic local alignment search tool. J. Mol. Biol., 215, 403–410 (1990)
  27. Livak K.J., and Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Methods, 25, 402-408 (2001)
  28. Chamaillard M., Hashimoto M., Horie Y., Masumoto J., Qiu S., Saab L., Ogura Y., Kawasaki A., Fukase K., Kusumoto S., Valvano M.A., Foster S.J., Mak T.W., Nuñez G. and Inohara N., An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid, Nat. Immunol., 4, 702-707 (2003)
  29. Karunasagar I., Rosalind G., Gopal M. and Rao K., Aeromonas hydrophila septicemia of Indian major carps in some commercial fish farms of West Godavari District, Andhra Pradesh, Curr. Sci. 58, 1044-1045 (1989)
  30. Clarke, T.B., Davis K.M., Lysenko E.S., Zhou A.Y., Yu Y. and Weiser J.N. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity, Nat. Med., 16, 228–231 (2010)