International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Influence of fish pond effluent on the microbiological characteristics of soil and growth of maize crop

Author Affiliations

  • 1Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Anambra State, Nigeria
  • 2Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Anambra State, Nigeria
  • 3Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Anambra State, Nigeria

Int. Res. J. Biological Sci., Volume 10, Issue (2), Pages 16-23, May,10 (2021)


Fish pond effluent is discharged untreated into the soil thereby producing objectionable odour and flies infestations. However, the effluent has been known to contain organic and inorganic nutrients and microorganisms which may promote crops growth and productivity, therefore this work studied the influence of the untreated fish pond effluent on the microbiological characteristics of soil and growth of maize crop. The microbial counts of the effluent and soil samples and growth characteristics of the maize crop were obtained using standard analytical methods. The microbial counts of the effluent-receiving soil were higher than those of the effluent samples and unpolluted soil. Bacillus subtilis (18.2%), Escherichia coli (20.5%), Serratia marcescens (13.6%), Pseudomonas fluorescens (15.9%), Lactobacillus plantarum (17.0%), Klebsiella pneumoniae (14.8%), Penicillium expansum (45.4%), Aspergillus niger (36.4%) and Aspergillus flavus (18.2%) were isolated from the effluent-receiving soil while the unpolluted soil had Staphylococcus epidermidis (28.3%), E. coli (19.6%), B. subtilis (17.4%), P. fluorescens (10.9%), Micrococcus luteus (8.7%), L. plantarum (6.5%), Kl. pneumoniae (4.3%), S. marcescens (4.3%), P. expansum (40.0%), Aspergillus niger (20.0%) and Aspergillus flavus (40.0%). The maize crop grown on the effluent-receiving soil had better growth characteristics than those planted on the unpolluted soil. This study indicated that the untreated fish pond effluent had positive effect on the soil microbial populations and enhanced the growth of maize crop, therefore, its use in agriculture to enhance soil fertility and crop growth is advocated.


  1. Naylor R.L; Goldberg, R.G; Primavera, J.H; Kautsky, N; Beveridge, M.C.M; Clay, J; Folke, C; Lubchenco, J; Mooney, H. and Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405,1017-1024. DOI: 10.1038/36016500., undefined, undefined
  2. Meso, M.B; Wood, C.W; Karanja, N.K; Veverica, K.L; Woomer, P.L. and Kinyali, S.M. (2004). Effects of fish pond effluents irrigation on French beans in Central Kenya. Commun. Soil Sc. Plan; 35(7-8), 1021-1031., undefined, undefined
  3. Cheesbrough Monica (2006). District laboratory practice in tropical countries. Part 2, 2nd edition. Cambridge University Press. Pp 395- 412. ISBN-10.0521676312., undefined, undefined
  4. Eze, V.C. and Ogbaran, I.O. (2010). Microbiological and physicochemical characteristics of fish pond water in Ughelli, Delta State, Nigeria. Int. J. Curr; Res. 8,082 -087., undefined, undefined
  5. Njoku, O.E; Agwa, O.K. and Ibiene, A.A. (2015). An investigation of the microbiological and physicochemical profile of some fish pond water within the Niger Delta Region of Nigeria. Afr. J. Food Sci; 9(3), 155-162. DOI 10.5897/AJF., undefined, undefined
  6. Kathleen, M.M; Samuel, L; Felecia, C; Reagan, E.L; Kasing, A; Lesley, M. and Toh, S.C. (2016). Antibiotic resistance of diverse bacteria from aquaculture in Borneo, Hindawi. Int. J. Microbiol. 61, 1-9. DOI: 10.1155/2016/2164761., undefined, undefined
  7. Oni, T.A; Olaeye, V.F. and Omafuvbe, B.O. (2013). Preliminary studies on associated bacterial and fungal load of artificially cultured Clarias gariepinus Burchell 1822 Fingerlings. Ife J. Sci; 15(1), 9-15., undefined, undefined
  8. Douglas, S.I. and Isor, F.N. (2015). Bacteriological investigation of pond water quality from Ogoniland, Nigeria. IOSR J. Environ. Sci. Toxicol. Food Technol; 9(2), 36-41., undefined, undefined
  9. Obire, O. and Anyanwu, E.C. (2009). Impact of various concentrations of crude oil on fungal populations of soil. Int. J. Environ. Sci. Tech; 6(2), 211-218. DOI: 10.1007/BF03327624, undefined, undefined
  10. Iqbal, Z. and Saleemi, S. (2013). Isolation of pathogenic fungi from a fresh water commercial fish, Catla catla (Hamliton). Sci. Int. (Lahore); 25(4), 851-855., undefined, undefined
  11. Osaigbovo, A.U. and Orhue, E.R. (2006). Influence of pharmaceutical effluent on some soil chemical parameters and early growth of maize (Zeamays L). Afri. J. Biotechnol; 5(18), 1612-1617. DOI: 10.4314ajb.v5i18.55 808., undefined, undefined
  12. Hashem, A; Tabassum, B. and Abd-Allah, E.F. (2019). Bacillus subtilis: a plant growth promoting rhizobacterium that impacts biotic stress. Saudi J. Biol. Sci; 26(6), 1291-1297. DOI: 10.1016/j.sjbs.2019.05.004., undefined, undefined
  13. Chandra, S.N; Rehman, A. and Chauhan, P.S. (2010). Environmental Escherichia coli occur as natural plant growth-promoting soil bacterium. Arch. Microbiol; 192(3), 185-193. DOI. 10.1007/s00203 - 010 - 0544 - 1., undefined, undefined
  14. Duarah, I. Deka, M; Saikia, N. and Deka-Boruah, H.P. (2011). Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. Biotech; 1(4), 227 - 238. DOI. 10.1007/s13205 - 011 - 0028 - 2., undefined, undefined
  15. Kai, M; Effmert, U; Berg, G. and Piechalla, B. (2007). Volatiles of bacteria antagonists inhibit mycelia growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol; 187(5), 351-360. DOI. 10.1007/s00203-006-0199-0., undefined, undefined
  16. Chen, Y.P; Rekha, P.D; Arun, A.B; Shen, F.T., Lai, W.A. and Young, C.C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing activities. App. Soil Ecol; 34(1), 33-41. DOI: 10.1016/j.apsoil.2005.12.002., undefined, undefined
  17. Khaiden, A.D., Pandey, P. and Sharma, G.D. (2016). Plant growth promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspara L; a medicinal plant. Hayati J. Biosciences. 23(4), 173-180. DOI: 1016/j.hjb.2016.12.006., undefined, undefined
  18. Radhapriya, P; Ramachandran, A; Anandham, R. and Mahalingam, S. (2015). Pseudomonas aeruginosa RRALC3 enhances the biomass, nutrient and carbon contents of Pongamia pinnata seedlings in degraded forest soil. PLOS ONE. 10(10), e0139881. DOI: 10.137/journal.pone.0139881., undefined, undefined
  19. Raza, F.A. and Faisal, M. (2013). Growth promotion of maize by desiccation tolerant Micrococcus luteus - Chp 37 isolated from Cholistan desert. Pakistan. Aust. J. Crop Sci; 7(11), 1693-1698., undefined, undefined
  20. Lamont, J.R; Wilkins, O; Bywater - Ekegard, M. and Smith, D.L. (2017). From yoghurt to yield: potential applications of lactic acid bacteria in plant production. Soil Biol. Biochem; 111, 1-9. DOI: 10.1016/ j.soilbio. 2017.03.015., undefined, undefined
  21. Ji, S.H; Gururani, M.A. and Chun, S. C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol. Res; 169(1), 83-98. DOI:10.1016/ j.micres.2013.06.003., undefined, undefined
  22. Sachdev, D.P; Chaudhari, H.G; Kasture, V. M.; Dhavale, D.D. and Chopade, B.A. (2009). Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J. Exp. Biol; 47(12), 993-1000., undefined, undefined
  23. Singh, R.P; Jha, P. and Jha, P. (2017). Bioinoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP -3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.). J. Plant growth Regul; 36(4), 783-798. DOI:10.1007/s00344-017-9683-9., undefined, undefined
  24. Radhakrishnan, R; Kang, S; Baek, I. and Lee, I. (2014). Characterization of plant growth promoting traits of Penicillium species against the effects of high soil salinity and root disease. J. Plant Interact; 9(1), 754-762. DOI:10.1080 /17429145.2014.930524., undefined, undefined
  25. Nasim, G; Mushatq, S and Khokbar, I. (2012). Effect of Penicillium extracts on germination vigor in subsequent seedling growth of tomato (Solanum lycopersicum L.). Arch. Phytopathology Plant Protect; 65(1), 71-77. DOI: 10.1080/03235408.2011.603965., undefined, undefined
  26. Jin, N; Liu, S., Peng, H; Huang, W; Kong, L; Wu, Y; Chen, U; Ge, F; Jian, H. and Peng, D. (2019). Isolation and characterization of Aspergillus niger NBCOOI underlying suppression against Heterodera glycines. Sci. Rep; 9(1), 591. DOI: 10.1038/s41598-018-37827-6., undefined, undefined
  27. Hamayun, I.M; Hussain, A; Khan, S.A; Iqbal, A. and Lee, I. (2019). Aspergillus flavus promoted the growth of soybean and sunflower seedlings at elevated temperature. Hindawi Biomed Res. Int; 1-14. 10.1155/2019/1295457., undefined, undefined