International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Current updates on Vaccine with SARS-COV-2 - A review

Author Affiliations

  • 1Department of Biotechnology, MRD Life Sciences Pvt. Ltd. Lucknow, India
  • 2Department of Biotechnology, MRD Life Sciences Pvt. Ltd. Lucknow, India

Int. Res. J. Biological Sci., Volume 10, Issue (1), Pages 45-52, February,10 (2021)

Abstract

SARS-CoV-2 pivotal agent of coronavirus disease, initially appeared in China in late December 2019. This has since contaminated in excess of eight lakhs seventy thousands people and gave rise to in excess of forty three thousands deaths worldwide. Here, we explore SARS-CoV-2 prophylactic and therapeutic strategies with prominence on the vaccine production and their obstacles. Vaccines are quickly evolving but would possibly emerge quite late to impact a possible pandemic\'s first wave. Important lessons for the production of vaccines here against quickly evolving viruses, however, may be studied. Importantly, vaccines with SARS-CoV-2 would be necessary to reduce mortality and morbidity if virus is identified in the population.

References

  1. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... and Cheng, Z. (2020)., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China., The lancet, 395(10223), 497-506.
  2. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., ... and Yuan, M. L. (2020)., A new coronavirus associated with human respiratory disease in China., Nature, 579(7798), 265-269.
  3. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... and Chen, H. D. (2020)., A pneumonia outbreak associated with a new coronavirus of probable bat origin., Nature, 579(7798), 270-273.
  4. Boni, M. F., Lemey, P., Jiang, X., Lam, T. T. Y., Perry, B. W., Castoe, T. A., ... & Robertson, D. L. (2020)., Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic., Nature Microbiology, 5(11), 1408-1417.
  5. Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., ... and Du, B. (2020)., Clinical characteristics of coronavirus disease 2019 in China., New England journal of medicine, 382(18), 1708-1720.
  6. Cui, J., Li, F., and Shi, Z. L. (2019)., Origin and evolution of pathogenic coronaviruses., Nature reviews Microbiology, 17(3), 181-192.
  7. Fehr, A. R., and Perlman, S. (2015)., Coronaviruses: An overview of their replication and pathogenesis., In Coronaviruses, 1-23. Humana Press, New York, NY.
  8. De Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., ... and Feldmann, H. (2020)., Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection., Proceedings of the National Academy of Sciences, 117(12), 6771-6776.
  9. Mulangu, S. (2019)., PALM Writing Group; PALM Consortium Study Team., A randomized, controlled trial of Ebola virus disease therapeutics.
  10. Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., Sheahan, T. P., Lu, X., ... & Denison, M. R. (2018)., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease., MBio, 9(2).
  11. Hull, M. W. and Montaner, J. S. (2011)., Ritonavir-boosted protease inhibitors in HIV therapy., Annals of medicine, 43(5), 375-388.
  12. Chu, C. M., Cheng, V. C. C., Hung, I. F. N., Wong, M. M. L., Chan, K. H., Chan, K. S., ... and Peiris, J. S. M. (2004)., Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings., Thorax, 59(3), 252-256.
  13. Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., ... and Spahn, J. E. (2020)., Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV., Nature Communications, 11(1), 1-14.
  14. Teissier, E., Zandomeneghi, G., Loquet, A., Lavillette, D., Lavergne, J. P., Montserret, R., ... and Pecheur, E. I. (2011)., Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol., PloS one, 6(1).
  15. Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C. M., Jiao, J. A., ... & Frieman, M. B. (2016)., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo., Science translational medicine, 8(326), 326ra21-326ra21.
  16. Lim, J., Jeon, S., Shin, H. Y., Kim, M. J., Seong, Y. M., Lee, W. J., ... and Park, S. J. (2020)., Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR., Journal of Korean medical science, 35(6).
  17. Krammer, F., and Palese, P. (2015)., Advances in the development of influenza virus vaccines., Nature reviews Drug discovery, 14(3), 167-182.
  18. Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., ... and Wang, X. (2020)., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor., Nature, 1-6.
  19. Roper, R. L., & Rehm, K. E. (2009)., SARS vaccines: where are we?., Expert review of vaccines, 8(7), 887-898.
  20. Tseng, C. T., Sbrana, E., Iwata-Yoshikawa, N., Newman, P. C., Garron, T., Atmar, R. L., ... & Couch, R. B. (2012)., Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus., PloS one, 7(4), e35421.
  21. Wang, Q., Zhang, L., Kuwahara, K., Li, L., Liu, Z., Li, T., ... and Morioka, H. (2016)., Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates., ACS Infectious Diseases, 2(5), 361-376.
  22. Houser, K. V., Broadbent, A. J., Gretebeck, L., Vogel, L., Lamirande, E. W., Sutton, T., ... and Subbarao, K. (2017)., Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody., PLoS pathogens, 13(8), e1006565.
  23. Callow, K. A., Parry, H. F., Sergeant, M., and Tyrrell, D. A. J. (1990)., The time course of the immune response to experimental coronavirus infection of man., Epidemiology and Infection, 105(2), 435-446.
  24. Wu, L. P., Wang, N. C., Chang, Y. H., Tian, X. Y., Na, D. Y., Zhang, L. Y., ... and Liang, G. D. (2007)., Duration of antibody responses after severe acute respiratory syndrome., Emerging infectious diseases, 13(10), 1562.
  25. Kim, D. D., & Goel, A. (2020)., Estimating case fatality rates of COVID-19., The Lancet infectious diseases, 20(7), 773-774.
  26. Sambhara, S., & McElhaney, J. E. (2009)., Immunosenescence and influenza vaccine efficacy., Vaccines for Pandemic Influenza, 413-429.
  27. Tsai, T. F. (2013)., Fluad®-MF59®-adjuvanted influenza vaccine in older adults., Infection and chemotherapy, 45(2), 159-174.
  28. Benoit, A., Beran, J., Devaster, J. M., Esen, M., Launay, O., Leroux-Roels, G., ... and Jackson, L. A. (2015)., Hemagglutination inhibition antibody titers as a correlate of protection against seasonal A/H3N2 influenza disease., In Open forum infectious diseases, 2(2). Oxford University Press.
  29. Martin, J. E., Louder, M. K., Holman, L. A., Gordon, I. J., Enama, M. E., Larkin, B. D., ... and Bailer, R. T. (2008)., A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial., Vaccine, 26(50), 6338-6343.
  30. Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., ... and Ying, T. (2020)., Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody., Emerging microbes and infections, 9(1), 382-385.
  31. Yong, C. Y., Ong, H. K., Yeap, S. K., Ho, K. L., & Tan, W. S. (2019)., Recent advances in the vaccine development against Middle East respiratory syndrome-coronavirus., Frontiers in Microbiology, 10, 1781.
  32. Pallesen, J., Wang, N., Corbett, K. S., Wrapp, D., Kirchdoerfer, R. N., Turner, H. L., ... and Kong, W. P. (2017)., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen., Proceedings of the National Academy of Sciences, 114(35), E7348-E7357.
  33. Akst, J. (2020)., COVID-19 vaccine frontrunners., The Scientist. 7.
  34. Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., ... & Qin, C. (2020)., The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice., Nature, 583(7818), 830-833.
  35. Kaslow, D. C. (2020)., Certainty of success: three critical parameters in coronavirus vaccine development., NJP Vaccines, 5(1), 1-7.