International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A review on production of biofuels from novel biomass

Author Affiliations

  • 1Department of Biotechnology, Vivekanandha College of Engineering for Women, Elayampalayam, Tiruchengode - 637 205, Tamilnadu, India
  • 2Department of Biotechnology, Vivekanandha College of Engineering for Women, Elayampalayam, Tiruchengode - 637 205, Tamilnadu, India
  • 3Department of Biotechnology, Vivekanandha College of Engineering for Women, Elayampalayam, Tiruchengode - 637 205, Tamilnadu, India

Int. Res. J. Biological Sci., Volume 10, Issue (1), Pages 53-64, February,10 (2021)


Nowadays, with a great increase in global population, converting the society to a comfortable feel good environment would be the only solution for stabling a permanent life on this planet. There is considerable potential to improve biomass fuels in producing suitable power sources such as combustible fuels, electricity and fuel gases, while abiding to provide conventional uses of biomass. The upgrading qualities and the industrial investment of biomass have already happening in many countries because biomass energy has specific amount of environmental and social benefits compared with fossil fuels. Biofuel is a fuel, derived from living organisms mostly from plants and other microbes. We can produce biofuels in an efficient and sustainable manner. The below review discusses various sources of biomass and their rate of production for different fuels (biomethanol, biobutanol, bioethanol, biodiesel and bio-hydrogen). Biomass energy productions global potential is large in absolute terms which could be realistically used to supply nearly 1,0,000Mega Watts (100quads) of electric capacity by 2020, and perhaps we can suspect the amount will be doubled by the year 2030. Sustainable economic growth along with industrial growth needs safe and feasible resources of energy. For the future re-arrangement of an encounter economy, we completely require new approaches in research and product development. In this review, we are mainly focusing on cost effective technologies and some mechanisms to convert biomass into useful liquid biofuels and bio products. We specifically focus on the production of alternative fuels from different feedstock and aiming to give comparative studies.


  1. Jane H. Turnbull (1996)., Strategies for achieving a sustainable, clean and cost-effective biomass resource., Biomass and bioenergy, 10(2-3), 93-100.
  2. Hall D. O. (1997)., Biomass energy in industrialised countries-a view of the future., Forest ecology and Management, 91, 17-45.
  3. Christopher B. Field, J. Elliott Campbell and David B. Lobell (2008)., Biomass energy: the scale of the potential resource., Trends in Ecology and Evolution, 23(2), 65-72.
  4. Cheng, J., & Timilsina, G. R. (2010)., Advanced biofuel technologies: status and barriers., World Bank Policy Research Working Paper, (5411).
  5. Douskova I, Kastanek F, Maleterova Y, Kastanek P, Doucha J and Machleder V (2010)., Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products., Energy Convers Manage, 51, 606-11.
  6. Xiaoqiang Wang et al., (2013)., Microalgal Biomethane production integrated with an existing biogas plant: A case study in Sweden. Applied Energy, 112, 478-484., undefined
  7. Hitoshi Nakagawa (2011)., Biomethanol Production from Forage Grasses, Trees and Crop Residues., Biofuels Engineering Process Technology, 715-732.
  8. Hitoshi Nakagawa, Toshirou Harassda, Toshimitsu Ichinose, Shinji Matsumoto, Keiji Takeno and Masayasu Sakai (2008)., Biomethanol production from various forms of biomass: utilization of forage grasses, trees, and crop residues., Food and Fertilizer Technology Center, 1-11.
  9. Vineet Singh Sikarwara, Ming Zhaoa, Paul S. Fennelld, Nilay Shahd and Edward J. Anthonye (2017)., Progress in biofuel production from gasification., Progress in Energy and Combustion Science, 189-248.
  10. Shamsul N.S., Kamaruddin K., Kofli N.T., Rahman N.A. (2016)., Optimization of bio-methanol production from goat manure in single stage bioreactor., International Journal of hydrogen energy, 1-13.
  11. Anitha M, Kamarudin S.K, Shamsul N.S. and Kofli N.T (2015)., Determination of bio-methanol as intermediate product of anaerobic co-digestion in animal and agriculture wastes., International Journal of Hydrogen Energy, 1-11.
  12. Sam SA and Olusegun AA (2012)., Methanol production from cow dung., Environmental and Earth Sciences, 22224-3216.
  13. Chisti, Y. (2007)., Biodiesel from microalgae., Biotechnology advances, 25(3), 294-306.
  14. Chiu S-Y, Kao C-Y, Chen C-H, Kuan T-C, Ong S-C, Lin C-S (2008)., Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor., Bioresour Technol, 99, 3389-96.
  15. Iyovo GD, Du GC and Chen J. (2010)., Poultry manure digestate enhancement of Chlorella Vulgaris biomass under mixotrophic condition for biofuel production., Journal of Microb Biochem Technol, 2(5), 1-7.
  16. Collet, P., Helias, A., Lardon, L., Ras, M., Goy, R. A., & Steyer, J. P. (2011)., Life-cycle assessment of microalgae culture coupled to biogas production., Bioresource Technology, 102(1), 207-214.
  17. Liu Y, (2010)., Green algae as a substrate for biogas production - cultivation and biogas Potentials., Master thesis of Linkoping University.
  18. Sialve B, Bernet N and Bernard (2009)., O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable., Biotechnol Adv, 27, 409-16.
  19. Mussgnug JH, Klassen V, Schluter A, Kruse O (2010), Microalgae as substrates for fermentative biogas production in a combined bio-refinery concept,J of Biotechnol150,51-6., undefined, undefined
  20. Lin YQ, Wang DH, Wu SQ, Wang CM (2009)., Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge., J Hazard Mater, 170, 366-73.
  21. Raposo F, Fernandez-Cegri V, De la Rubia MA, Borja R, Beline F, Cavinato C, et al (2011)., Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study., J Chem Technol Biotechnol, 86, 1088-98.
  22. Y. X. Liu, J. Zhang, Y. Yuan et al. (2015)., Sequential bioethanol and biogas production from sugarcane bagasse based on high solids-batch SSF., Energy, 90(7).
  23. Seungdo Kim and Bruce E. Dale (2004)., Global potential bioethanol production from wasted crops and crop residues., Biomass and Bioenergy, 26, 361 - 375.
  24. Yunyun Liu (2015)., Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy, 1-7., undefined
  25. Chizuru Sasaki (2011)., Surface carbohydrate analysis and bioethanol production of sugarcane bagasse pretreated with the white rot fungus, Ceriporiopsis subvermispora and microwave hydrothermolysis, Bioresource Technology, 102, 9942-9946.
  26. Marina O.S. and Dias (2009)., Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process., Chemical engineering research and design, 87, 1206-1216.
  27. Alya Limayem and Steven C. Ricke (2012)., Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects., Progress in Energy and Combustion Science 38, 449-467.
  28. Maurya, D. P., Singla, A., & Negi, S. (2015)., An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol., 3 Biotech, 5(5), 597-609.
  29. Piotr Oleśkowicz-Popiel (2011)., Ensiling e Wet-storage method for lignocellulosic biomass for bioethanol production., Biomass and Bioenergy, 35, 2087-2092.
  30. Balat, M., Balat, H., Oz, C. (2008)., Progress in bioethanol processing., Prog. Energy Combust. Sci., 34, 551-573.
  31. Nigam PS and Singh A (2011)., Production of liquid biofuels from renewable resources., Progress in Energy and Combus-tion Science, 37(1), 52-68. doi:10.1016/j. pecs.2010.01.003.
  32. John RP, Anisha GS, Nampoothiri KM and Pandey A (2011)., Micro Centremacroalgal biomass: A renewable source for bioethanol., Bioresource Technology, 102(1), 186-193. doi:10.1016/j.biortech.2010.06.139.
  33. Choi WY, Han JG, Lee CG, Song CH, Kim JS, Seo YC, Lee SE, Jung KH, Kang DH, Heo SJ, Cho JS, Lee HY (2012)., Bioethanol production from Ulvapertusa Kjellman by high-temperature liquefaction., Chemical and Bio-chemical Engineering, 26(1), 15-21.
  34. Eshaq FS, Ali MN, Mohd MK (2011)., Production of bioethanol from next generation feed-stock alga Spiro-gyra species., International Journal of Engineering, Science and Technology, 3(2), 1749-1755.
  35. Abdullah, A. (2007)., Solid and liquid pineapple waste utilization for lactic acid fermentation using Lactobacillus delbrueckii., Reaktor, 11(1), 50-52.
  36. Larrauri, J. A., Ruperez, P. and Calixto, F. S (1997),, Pineapple shell as a source of dietary fiber with associated polyphenols., Journal of Agricultural and Food Chemistry, 45(10), 4028-4031.
  37. Nigam, J. N. (1999)., Continuous ethanol production from pineapple cannery waste., Journal of Biotechnology, 72(1), 197-202.
  38. Nigam, J. N. (1999)., Continuous cultivation of the yeast Candida utilis at different dilution rates on pineapple cannery waste., World Journal of Microbiology & Biotechnology, 15(1), 115, 1008870228213
  39. Arnold F. (2008)., The race for new biofuels., International Journal of Engineering Science, 71(2), 12-9.
  40. Szulczyk K. (2010)., Which is a better transportation fuel-butanol or ethanol?,, International Journal of energy and environment, 1(3), 501-12.
  41. Cascone R. (2008)., Biobutanol - a replacement for bioethanol?,, journal chemical engineering progress 104, S4-S9.
  42. Wu M, Wang M, Liu J and Huo H. (2008)., Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel., Biotechnology Progress, 24, 1204-14.
  43. Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, et al. (2010)., Clostridium ljungdahlii represents a microbial production platform based on syngas., Proceedings of the National Academy of Sciences, 107(29), 13087-92.
  44. Amruta Morone and R.A. Pandey (2014)., Lignocellulosic biobutanol production: Gridlocks and potential remedies., Renewable and Sustainable Energy Reviews, 37, 21-35.
  45. Laszlo Dobos (2011)., Biobutanol - production and purification methods., Ecological chemistry and engineering, 18(1), 31-37.
  46. Pranhita R. Nimbalkar (2018)., Biobutanol production using pea pod waste as substrate: Impact of drying on saccharification and fermentation., Renewable Energy, 117, 520-529.
  47. TW Jesse (2002)., Production of butanol from starch-based waste packing peanuts and agricultural waste., Journal of Industrial Microbiology & Biotechnology, 29, 117-123.
  48. Dhillon GS, Bansal S and Oberoi HS (2007)., Cauliflower waste incorporation into cane molasses improves ethanol production using Saccharomyces cerevisiae MTCC 178., Indian J Microbiol, 47, 353-357.
  49. Oberoi HS, Kalra KL, Uppal DS and Tyagi SK (2007)., Effects of different drying methods of cauliflower waste on drying time, colour retention and glucoamylase production by Aspergillusniger NCIM 1054., Int J Food Sci Technol, 42, 228-234.
  50. Ezeji T, Qureshi N, Blaschek HP, (2007)., Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation., Biotechnol Bioeng, 97, 1460-1469.
  51. Raganati F, Olivieri G, Gotz P, Marzocchella A, Salatino P, (2015)., Butanol production from hexoses and pentoses by fermentation of Clostridium acetobutylicum., Anaerobe, 34, 146-155.
  52. Amiri H and Karimi K, (2016)., Integration of autohydrolysis and organosolv delignification for efficient ABE production and lig-nin recovery., Ind Eng Chem Res, 55, 4836-4845.
  53. Manisha A. Khedkar, Pranhita R. Nimbalkar , Prakash V. Chavan1, Yogesh J. Chendake and Sandip B. Bankar (2017)., Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: drying kinetics study., Bioresource Technologies, 225, 359-366. DOI:
  54. Zhu, W.Z., Westman, G. and Theliander, H., (2014)., Investigation and characterization of lignin precipitation in the lignoboost process., J. Wood Chem. Technol, 34, 77-97.
  55. Lee, S. F., Forsberg, C. W. and Gibbins, L. N. (1985)., Cellulolytic activity of Clostridium acetobutylicum., Appl. Environ. Microbiol., 50, 220-228.
  56. Cheng, C. L., Che, P. Y., Chen, B. Y., Lee, W. J., Lin, C.Y., Chang, J. S. (2012)., Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora., Appl. Energy, 100, 3-9.
  57. Rasika L. Kudahettige Nilsson, Jonas Helmerius, Robert T. Nilsson, Magnus Sjoblom and David B. Hodge (2015)., Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor., Bioresource Technologies, 176,71-79, DOI: http://dx.doi. org/10.1016/j.biortech.2014.11.012
  58. Sun, X.F., Sun, R.C. and Tomkinson, J., (2004)., Degradation of wheat straw lignin and hemicellulosic polymers by a totally chlorine-free method., Polymer Degradation and Stability, 83, 47-57.
  59. Abu Yousuf (2012)., Biodiesel from lignocellulosic biomass - Prospects and challenges., Waste Management, 32, 2061-2069.
  60. Holdsworth, J.E. and Ratledge, C., (1988)., Lipid turnover in oleaginous yeasts., Journal of General Microbiology, 134, 339-346.
  61. Holdsworth, J.E., Veenhuis, M. and Ratledge, C. (1988)., Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids., Journal of General Microbiology, 134, 2907-2915.
  62. Miao, X.L., Wu, Q.Y. and Yang, C.Y. (2004)., Fast pyrolysis of microalgae to produce renewable fuels., The Journal of Analytical and Applied Pyrolysis, 71(2), 855- 863.
  63. Xiaoling Miao and Qingyu Wu (2006)., Biodiesel production from heterotrophic Microalgal Oil., Bioresource Technology, 97, 841-846.
  64. Shakeel A. Khan (2009)., Prospects of biodiesel production from microalgae in India., Renewable and Sustainable Energy Reviews, 13, 2361-2372.
  65. Robert B. Levine, Tanawan Pinnarat, and Phillip E. Savage (2010)., Biodiesel Production from Wet Algal Biomass through in Situ Lipid Hydrolysis and Supercritical Transesterification., Energy and fuels, 24(9), 5235-5243.
  66. Chisti, Y. (2007)., Biodiesel from microalgae., Biotechnology Advances 25, 294-306. DOI No: https://doi. org/10.1016/j.biotechadv.2007.02.001
  67. Huntley, M. and Redalje, D. (2007)., CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal., Mitigation and adaptation strategies for global changes, 12, 573-608.
  68. Hu, B., Sommerfeld, M., Jarvis, E., Ghirardi, M., et al. (2008)., Microalgaltriacylglycerols as feedstocks for biofuels production: Perspectives and advances., Plant Journal, 54, 621-639.
  69. Li, Q., Du, W. and Lieu, D (2008)., Perspectives of microbial oils., Applied Microbiology and Biotechnology.
  70. Vasudevan, P. T. and Briggs, M. (2008)., Biodiesel production - current state of the art and challenges., Journal of Industrial Microbiology and Biotechnology, 35, 421-430.
  71. Knothe, G (2005)., Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters., Fuel Processing Technology.
  72. Knothe, G (2009)., Dependence of biodiesel fuel properties on the structure of fatty acid ester composition., Energy Environmental Science, 2, 759-766.
  73. Aggelis G, Komaitis M, Papanikolaou S and Papadopoulos G, (1995)., A mathematical model for the study of lipid accumulation in oleaginous microorganisms. Lipid accumulation during growth of Mucorcircinelloides CBS172-27 on a vegetable oil., Grasasy Aceites, 46, 169-73.
  74. Aggelis G and Sourdis J. (1997)., Prediction of lipid accumulation degradation in oleagi-nous microorganisms growing on vegetable oils., Antonie van Leeuwenhock, 72, 159-65.
  75. Metzger P and Largeau C. Botryococcusbraunii (2005)., A rich source for hydrocarbons and related ether lipids., Appl Microbiol Biotechnol, 66, 486-96.
  76. Shireen Meher Kotay and Debabrata Das (2008)., Biohydrogen as a renewable energy resource-Prospects and potentials., International Journal of Hydrogen Energy, 33, 258-263.
  77. Ren N, Cao G, Wang A, Lee DJ, Guo W and Zhu Y (2008),, Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16, International Journal of Hydrogen Energy, 33, 6124-32., undefined
  78. Mangayil R, Santala V and Karp M (2011)., Fermentative hydrogen production from different sugars by Citrobacter sp. CMC-1 in batch culture., International Journal Hydrogen Energy, 36, 15187-94.
  79. Chin HL, Chen ZS and Chou CP (2003)., Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production., Biotechnology progress, 19, 383-388.
  80. Yokoi H, Maeda Y, Hirose J and Hayashi S (1997)., Hydrogen production by immobilized cell of Clostridium butyricum on porous glass beads., Biotechnology progress, 11, 431-3.
  81. Percival E, (1979)., The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function., European Journal of Phycology, 14 103-17.
  82. Noike T and Mizuno O (2000)., Hydrogen fermentation of organic municipal wastes., Water Science and Technology: A Journal of the International Association on Water Pollution Research, 155-62.
  83. Okamoto M, Miyahara T, Mizuno O and Noike T, (2000)., Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes., Water Science and Technology: A Journal of the International Association on Water Pollution Research, 41, 25.
  84. Mizuno O, Ohara T, Shinya M and Noike T (2000)., Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora., Water Science and Technology, 42(3-4), 345-350. 10.2166/wst.2000.0401,
  85. Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., & Seibert, M. (2000)., Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green Alga Chlamydomonas reinhardtii., Plant physiology, 122(1), 127-136.
  86. Prakasam RS, Sathish T, Brahmaiah P, SubbaRao C, Sreenivas Rao R and Hobbs PJ, (2009)., Biohydrogen production from renewable agri-waste blend: optimization using mixer design., Int J Hydrogen Energy, 34(15), 6143-8.
  87. Roy, S., & Das, D. (2015)., Liquid fuels production from algal biomass. In Algal biorefinery: An integrated approach., Springer, Cham. 277-296.
  88. De Vrije, T., Mars, A. E., Budde, M. A. W., Lai, M. H., Dijkema, C., De Waard, P., & Claassen, P. A. M. (2007)., Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus., Applied Microbiology and Biotechnology, 74(6), 1358-1367.
  89. Van de Werken, H. J., Verhaart, M. R., VanFossen, A. L., Willquist, K., Lewis, D. L., Nichols, J. D., ... & Kengen, S. W. (2008)., Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus., Applied and Environmental Microbiology, 74(21), 6720-6729.
  90. Ivanova, G., Rakhely, G., & Kovacs, K. L. (2008). Hydrogen production from biopolymers by, Caldicellulosiruptor saccharolyticus and stabilization of the system by immobilization., International journal of hydrogen energy, 33(23), 6953-6961.
  91. Rainey, F. A., Donnison, A. M., Janssen, P. H., Saul, D., Rodrigo, A., Bergquist, P. L., ... & Morgan, H. W. (1994)., Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium., FEMS Microbiology Letters, 120(3), 263-266.