9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Plants: "Green" Route for Nanoparticle Synthesis

Author Affiliations

  • 1 Department of Biotechnology, School of Life Sciences, Karpagam University, Coimbatore, Tamil Nadu, INDIA

Int. Res. J. Biological Sci., Volume 1, Issue (5), Pages 85-90, September,10 (2012)

Abstract

The synthesis of nanoparticles has become the matter of great interest in recent times due to its various advantageous properties and applications in various fields. Though physical and chemical methods are more popular for nanoparticle synthesis, the biogenic production is a better option due to eco-friendliness. This review reports the potential of plants i.e. “green chemistry” to synthesize nanoparticles not only in the laboratory scale but also in their natural environment. Furthermore, factors affecting biosynthesis along with current and future applications are also discussed.

References

  1. Daniel M.C. and Astruc D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem Rev., 104, 293–346 (2004)
  2. Kato H., In vitro assays: tracking nanoparticles inside cells, Nat Nanotechnol., , 139–140 (2011)
  3. Liu J., Qiao S.Z., H, Q.H. and Lu G.Q., Magnetic nanocomposites with mesoporous structures: synthesis and applications, Small., , 425–443 (2011)
  4. Grass L.R.N., Athanassiou E.K. and Stark W.J., Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals, Chem Mater., 22, 155-160 (2010)
  5. Tiwari D.K., Behari J. and Sen P., Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach, Curr Sc.i, 95, 647–655 (2008)
  6. Mohanpuria P., Rana N.K. and Yadav S.K., Biosynthesis of nanoparticles: technological concepts and future applications, J Nanopart Res., 10, 507–517 (2008)
  7. Li X., Xu H., Chen Z., Chen G., Biosynthesis of nanoparticles by microorganisms and their applications, J Nanomater., 2011, 1-16 (2011)
  8. Popescu M., Velea A. and Lorinczi A., Biogenic production of nanoparticles, Dig J Nanomater Bios., , 1035 – 1040 (2010)
  9. Dushenkov V., Kumar P.B.A.N., Motto H. and Raskin I., Rhizofiltration: the use of plants to remove heavy metals from aqueous streams, Environ Sci Technol., 29, 1239-1245 (1995)
  10. Dibrov P., Dzioba J., Gosink K.K. and Hase C.C., Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholera, Antimicrob, Agents Chemother., 46, 2668-2670 (2002)
  11. Li S., Qui L., Shen Y., Xie A., Yu X., Zhang L. and Zhang Q., Green synthesis of silver nanoparticles using Capsicum annum L. extract, Green Chem., , 852-858 (2007)
  12. Sharma V.K., Yngard R.A. and Lin Y., Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Collo. Interf. Sci., 145, 83–96 (2009)
  13. Prathna T.C., Mathew L., Chandrasekaran N., Raichur AM., Mukherjee A., Biomimetic Synthesis of Nanoparticles: Science, Technology and Applicability, Edited A. Mukherjee, InTech Publishers, Croatia 1-20 (2010)
  14. Lamb A.E., Anderson C.W.N. and Haverkamp R.G., The extraction of gold from plants and its applications to phytomining, Chem New Zealand, 65, 31-33 (2001)
  15. Vedpriya A., Living systems: eco-friendly nanofactories,Dig J Nanomater Bios., , 9 – 21 (2010)
  16. Ankamwar B., Damle C., Ahmad A., Sastry M.. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution, J Nanosci Nanotechnol., , 1665–1671 (2005)
  17. Anderson C.W.N., Brooks R.R., Stewart R.B. and Simcock R., Induced hyperaccumulation of gold in plants, Nature., 395, 553-554 (1998)
  18. Huang J.W. and Cunningham S.D., Lead phytoextraction: species variation in Lead uptake and translocation, New Phytol., 134,75-84 (1996)
  19. Haverkamp R.G., Marshall A.T. and Agterveld D.V., Pick your Carats: Nanoparticles of gold–silver–copper alloy produced In Vivo, J Nanopart Res.,, 697-700 (2007)
  20. Lopez P.J., Gautier C., Livage J. and Coradin T., Mimicking biogenic silica nanostructures formation, Curr. Nanosci., ,73-83 (2005)
  21. Armendariz V., Herrera I., Peralta- Videa J.R., Jose Yacaman M., Troiani H., Santiago P. and Gardea-Torresdey J.L.,Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology, Nanopart Res., , 377–82 (2004)
  22. Song JY., Jang H.K. and Kim B.S., Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts, Process Biochem 44,133-1138 (2009)
  23. Muralidharan G., Subramanian L., Nallamuthu S.K., Santhanam V. and Sanjeev Kumar., Effect of reagent addition rate and temperature on synthesis of gold nanoparticles in microemulsion route, Ind. Eng. Chem. Res., 50, 8786-8791 (2011)
  24. Shanker S. S., Bhargava S. and Sastry M., Synthesis of gold nanospheres and nanotriangles by the Turkevich approach, J. Nanosc. Nanotechnol.,,1721-1727 (2005)
  25. Faiyas A.P.A., Vinod EM., Joseph J ., Ganesan R. and Pandey R.K. Dependence of pH and surfactant effect in the synthesis of magnetite (Fe) nanoparticles and its propertiesJ Magn Magne Mater., 322, 400-404 (2010)
  26. Mizutani N., Iwasaki T., Watano S., Yanagida T., Tanaka H. and Kawai T., Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles, Bull. Mater. Sci., 31, 713–717 (2008)
  27. Brightson M., Selvarajan P., John Kennady V., Freeda T.H. and Meenakshi Sundar S., Investigations on the effect of manganese ions on the structural and optical properties of ZnS nanoparticles synthesized by solvo-thermal route, Recent Res Sci and Technol., , 29-33 (2010)
  28. Mohamad M. F., Kamarudin K.S.N., Fathilah N. N.F.N.M. and Salleh M.M., The Effects of Sodium Chloride in the Formation of Size and Shape of Gold (Au) Nanoparticles by microwave-polyol method for mercury adsorption, World Acad. Sci. Eng. Technol., 74, 691-695 (2011)
  29. Bai H.J., Zhang Z.M. and Gong J., Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides, Biotechnol. Lett., 28, 1135 – 1139 (2006)
  30. Kitchens C.L., McLeod M.C. and Roberts C.B., Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane microemulsions, Langmuir,21, 5166-73 (2005)
  31. Huang J, LiQ, Sun D, Lu Y, Su Y, Yang X, et al, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnol., 18, 105104–105114 (2007)
  32. Andreeva D., Low temperature water gas shift over gold catalysts, Gold Bull., 35, 82 -88 (2002)
  33. Grisel R.J., Westsrate K.J., Gluhoi A. and Nieuwenhuys B. E.,catalysis by gold nanoparticles, Gold Bull., 35, 39-45 (2002)
  34. Yanez-Sedeno P. J. and Pingarron M., Gold nanoparticle-based electrochemical biosensors, Anal. Bioanal. Chem., 382, 884-886 (2005)
  35. Liu J. and Yi L., Colorimetric Biosensors Based on DNAzyme-Assembled Gold Nanoparticles, J. Fluorescence, 14, 343-354 (2004)
  36. Paciotti G.F., Myer L., Weinreich V., Goia D., Pavel N., McLaughlin R. E. and Tamarkin L., Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery, Drug Delivery, 11, 169-183 (2009)
  37. Mubarak Ali D., Divya C., Gunasekaran M. and Thajuddin N., Biosynthesis and characterization of Silicon – Germanium oxide nanocomposite by Diatom, Dig J Nanomater Bios., , 117 – 120 (2011)
  38. Jeffryes C., Gutu T., Jiao,J. and Rorrer G.L. Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the Diatom Pinnulariasp, Mater. Sci. EngC: Biomimetic Supramol Syst., 28, 107-118 200839.Li Z., Lee D., Sheng X. X., Cohen R. E. and Rubner M. F., Two-level antibacterial coating with both release-killing and contact-killing capabilities, Langmuir., 22, 9820-9823 (2006)
  39. 40.Chen Y.Y., Wang C.A., Liu H.Y., Qiu J.S. and Bao X.H., Ag/SiO: A novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes, Chem. Commun.,42, 5298-5300 (2005)
  40. 1.Setua P., Chakraborty A., Seth D., Bhatta M.U., Satyam P.V. and Sarkar N., Synthesis, optical properties, and surface enhanced Raman scattering of silver nanoparticles in nonaqueous methanol reverse micelles, J. Phys. Chem. C., 111, 3901-3907 (2007)
  41. 2.Panaek A., Kvitek L., Prucek R., Kolar M., Veerova R., Pizurova N., Sharma V. K., Nevena T. and Zboril R., Silver colloid nanoparticles: Synthesis, characterization and their antibacterial activity, J. Phys. Chem. B,, 110, 16248–16253 (2006)
  42. 3.Sandbhy V., MacBride M.M., Peterson B.R.. and Sen A., Silver bromide nanoparticles/polymer composites: dual action tunable antimicrobial materials, J. Am. Chem. Soc., 128 9798-9808 (2006)
  43. Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N. and Kim J. O., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., 52, 662-668 (2000)
  44. 5.Stobie N., Duffy B., McCormack D.E., Colreavy J., Hidalgo M. and McHale P., Prevention of Staphylococcus epidermisdis biofilm formation using a low –temperature processed silver doped phenyltriethoxysilane solgel coating. Biomater 29, 963-969 (2008)
  45. 6.Sing S., Patel P., Jaiswal S., Prabhune A.A., Ramana C.V. and Prasad B.L.V.,A direct method for the preparation of glycolipid-metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity, New J. Chem. 33, 646-652 (2009)
  46. 7.Krishnaraj C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T. and Mohan N., Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens, Coll Surf B: Biointer., 76, 50-56 (2010)
  47. 8.Konwarh R., Gogoi B., Philip R., Laskar M.A. and Karak N., preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial green silver nanoparticles using aqueous extract of Citrus sinensis peel,Colloids Surf. B: Biointerfaces., 84, 338-345 (2011)
  48. 9. Saxena A., Tripathi R.M. and Singh R.P., Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity, Dig J Nanomater. Bios, , 427-432 (2010)
  49. 50.Suranjit K., Pathak D., Patel A, Dalwadi P., Prasad R., Patel P. and Selvaraj K., Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect, African J Biotech., 10, 8122-8130 (2011)
  50. 1.Bhattacharya R. and Mukherjee P., Biological properties of “naked” metal nanoparticles Advanced Drug Delivery Rev., 60, 1289-1306 (2008)
  51. Kuo W.S., Chang C.N., Chang Y.T. and Yeh C.S., Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia, Chem. Commun. Camb., 32, 4853–4855 (2009)
  52. 3.Pissuwan D., Cortie C.H., Valenzuela S.M. and Cortie M.B.,Functionalised gold nanoparticles for controlling pathogenic bacteria, Trends in Biotechnol., 28, 207-213 (2009)
  53. 4.Ankamwar B., Chaudhary M. and Sastry M., Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing., Synth React Inorg Metal-Org Nano-Metal Chem., 35, 19–26 (2005)
  54. Lopez M.L., Parsons J.G., Peralta-Videa J.R. and Gardea-Torresdey J.L., A XAS study of the binding and reduction of Au(III) by hops biomass, Microchem Journal, 81, 50-56 (2005)
  55. 6.Song J.Y., Kwon E.Y. and Kim B.S., Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract, Bioprocess Biosyst Eng., 33, 159-64 (2010)
  56. 7.Soundarrajan C., Sankari A., Dhandapani P., Maruthamuthu S., Ravichandran S., Sozhan G. and Palaniswamy N., Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications, Bioproc Biosys Eng ., 35, 827-833 (2012)
  57. 8.Singh R.P., Shukla V.K., Yadav R.S., Sharma P.K., Singh P.K, Pandey A.C., Biological approach of zinc oxide nanoparticles formation and its characterization, Adv. Mat. Lett., , 313-317 (2011)
  58. 9.Sangeetha G., Rajeshwari S. and Venckatesh R., Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties, Mater Res Bull., 46, 2560–2566 (2011)