International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Establishment of paternity from humerus bone of an unidentified skeleton

Author Affiliations

  • 1DNA Unit, Division, Regional Forensic Science Laboratory, Central Range, Mandi – 175001, Himachal Pradesh, India
  • 2Directorate of Forensics Services, Junga, Shimla – 171218, Himachal Pradesh, India
  • 3Department of Forensic Science, Punjabi University, Patiala – 147002, Punjab, India

Res. J. Forensic Sci., Volume 10, Issue (1), Pages 7-11, January,29 (2022)

Abstract

DNA typing from decomposed human body remains a challenge to forensic DNA scientists. Degraded human body parts are received in forensic laboratories from mass disasters, bombings, terrorist attacks, volcanoes, etc. Identification of dead bodies from these cases are important from the social and legal perspective. In this study, identity and paternity were established from the humerus bone of unidentified skeleton. The DNA from humerus bone was isolated using organic method. The blood sample of putative son of the deceased was also received on cotton gauge and DNA was isolated using Qiagen EZ1® Advanced XL BioRobot. The isolated DNA was subjected to Multiplex PCR amplification with PowerPlex®21 kit (Promega Corporation, U.S.A.). Capillary electrophoresis of amplified products was done with 3130 Genetic Analyzer (Applied Biosystems, U.S.A.) and data were analyzed using GeneMapper® ID Software Version 3.2. By comparing DNA profiles of the humerus bone of unidentified skeleton and blood on cotton gauge of putative son helped in the establishment of paternity. Hence, humerus bones are a good exhibit for identification from decomposed human body.

References

  1. Siriboonpiputtana, T., Rinthachai, T., Shotivaranon, J., Peonim, V. and Rerkamnuaychoke, B. (2018)., Forensic genetic analysis of bone remain samples., Forensic. Sci. Int., 284, 167-175.
  2. Irwin, J.A., Edson, S.M., Loreille, O., Just, R.S., Barritt, S.M., Lee, D.A., Holland, T.D., Parsons, T.J. and Leney, M.D. (2007)., DNA identification of "Earthquake McGoon" 50 years postmortem., J. Forensic. Sci., 52(5), 1115-1118.
  3. Deng, Y-J., Li, Y-Z., Yu, X-G., Li, L., Wu, D-Y., Zhou, J., Man, T-Y., Yang, G., Yan, J-W., Cai, D-Q., Wang, J., Yang, H-M., Li, S-B. and Yu, J. (2005)., Preliminary DNA identification for the tsunami victims in Thailand., Genomics. Proteomics. Bioinform., 3(3), 143-157.
  4. Prahlow, J.A., Cameron, T., Arendt, A., Cornelis, K., Bontrager, A., Suth, M.S., Black, L., Tobey, R., Pollock, S., Stur, S., Cotter, K. and Gabrielse, J. (2017)., DNA testing in homicide investigations., Med. Sci. Law., 57(4), 179-191.
  5. Alonso, A., Martin, P., Albarrán, C., Garcia, P., de Simon, L.F., Iturralde, M.J., Fernández-Rodriguez, A., Atienza, I., Capilla, J., García-Hirschfeld, J., Martinez, P., Vallejo, G., García, O., García, E., Real, P., Alvarez, D., León, A. and Sancho, M. (2005)., Challenges of DNA profiling in mass disaster investigations., Croat. Med. J., 46(4), 540-548.
  6. Budowle, B., Bieber, F.R. and Eisenberg, A.J. (2005)., Forensic aspects of mass disasters: strategic considerations for DNA-based human identification., Legal. Med., 7(4), 230-243.
  7. Biesecker, L.G., Bailey-Wilson, J.E., Ballantyne, J., Baum, H., Bieber, F.R., Brenner, C., Budowle, B., Butler, J.M., Carmody, G., Conneally, P.M., Duceman, B., Eisenberg, A., Forman, L., Kidd, K.K., Leclair, B., Niezgoda, S., Parsons, T.J., Pugh, E., Shaler, R., Sherry, S.T., Sozer, A. and Walsh, A. (2005)., DNA identifications after the 9/11 world trade center attack., Sci., 310(5751), 1122-1123.
  8. Dalibor, N. and Vladimir, P. (2020)., The challenges of forensic medical expertise in aircraft accidents: A case report., J. Indian. Acad. Forensic. Med., 42(10), 63-65.
  9. Artés, T., Oom, D., de Rigo, D., Durrant, T.H., Maianti, P., Libertà, G. and San-Miguel-Ayanz, J. (2019)., A global wildfire dataset for the analysis of fire regimes and fire behaviour., Sci. Data. 6, 296. https://doi.org/10.1038/ s41597-019-0312-2.
  10. Prinz, M., Carracedo, A., Mayr, W. R., Morling, N., Parsons, T. J., Sajantila, A., ... & Schneider, P. M. (2007)., DNA Commission of the International Society for Forensic Genetics: recommendations regarding the role of forensic genetics for disaster victim identification (DVI)., Forensic Science International: Genetics, 1(1), 3-12.
  11. Parsons, T.J., Huel, R.M.L., Bajunović, Z. and Rizvić, A. (2019)., Large scale DNA identification: The ICMP experience., Forensic. Sci. Int. Genet., 38, 236-244.
  12. Collins, M.J., Nielsen-Marsh, C.M., Hiller, J., Smith, C.I., Roberts, J.P., Prigodich, R.V., Wess, T.J., Csapò, J., Millard, A.R. and Turner–Walker, G. (2002)., The survival of organic matter in bone: a review., Archaeometry., 44(3), 383-394.
  13. Somesh, M.S., Prabhu, L.V., Shilpa, K., Pai, M.M., Krishnamurthy, A. And Murlimanju, B.V. (2011). Morphometric study of the humerus segments in Indian population., Int. J. Morphol., 29(4), 1174-1180., undefined
  14. Desai, S.D. and Shaik, H.S. (2012)., A morphometric study of humerus segments., J. Pharm. Sci. Res., 4(10), 1943-1945.
  15. Thatcher, S.A. (2015)., DNA/RNA preparation for molecular detection., Clin. Chem., 61(1), 89-99.
  16. Sureni V. Mullegama, Michael O. Alberti, Cora Au, Yan Li, Traci Toy, Vanina Tomasian & Rena R. Xian (2019)., Nucleic acid extraction from human biological samples., In Yong, W. (Ed.). Biobanking. Methods in Molecular Biology (vol 1897). Humana Press, New York.
  17. QIAGEN (2021)., EZ1 DNA Investigator Handbook., https://www.qiagen.com/ca/resources/download.aspx?id=46064856-1b88-4b27-a825-d3f616e06c08&lang=en. 17 January 2021.
  18. PROMEGA (2021)., PowerPlex® 21 System for Use on the Applied Biosystems®Genetic Analyzers, DC8902 and DC8942., https://www.promega.com/~/media/Files/ Resources/Protocols/Technical%20Manuals/101/PowerPlex%2021%20System%20Protocol.pdf. 17 January 2021.