International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Simulation of the impacts of hill dams and lakes on water and sediment yields: case of Wadi Hatab Basin, Central Tunisia

Author Affiliations

  • 1Higher Institute of Technological Studies of Sfax, Sfax, Tunisia
  • 2Faculty of Sciences, University of Sfax, Sfax, Tunisia

Int. Res. J. Earth Sci., Volume 8, Issue (2), Pages 31-43, August,25 (2020)

Abstract

Semi-arid regions are particularly subjected to water erosion because of erratic rainfall distributions, alternating from long drought periods to severe flash floods. The protection against this phenomenon usually requires the implantation of Soil and Water Conservation Works (SWCW) such as water retention facilities. The hydrological impacts of these latter on water and sediment fluxes in the Wadi Hatab Basin (Central Tunisia) are simulated. The tool used is SWAT model (Soil and Water Assessment Tool). The implementation of hill dams resulted in a reduction of discharge at the outlet of 6 to 42%. It also yielded a reduction of 4 to 41% of sediment concentration. The integration of dams in the simulation led to an increase in groundwater flow of 14% to 84%, an increase of the total flow of 1% to 36% and a maximum reduction in sediment yield of 25% during the year 2010, when the six dams were operational. The integration of hill lakes led to a maximum reduction of 6% in flow rates and 4% of the sediment concentration at the outlet of the study basin in 2010.

References

  1. MEAT, Ministère de l, Les indicateurs de développement durable en Tunisie., Ministère de Ministère de l
  2. MEDD, Ministère de l, en euvre du programme daction nationale contre la désertification, Programme daction régional de lutte contre la désertification du Gouvernorat de Kasserine., PALCD. 107p
  3. Hamza, A., and Hamou, H. (1995)., Rôle des ouvrages de conservation des eaux et du sol dans la lutte contre les inondations., Agriculture, durabilité et environnement. S. Zekri et A. Laajimi (Eds). Zaragoza, CIHEAM-IAMZ, 9, 87-96.
  4. Dridi, B. (2000)., Impact des aménagements sur la disponibilité des eaux de surface dans le bassin versant du Merguellil (Tunisie central, Doctoral dissertation, Strasbourg 1.‏ Université Louis Pasteur Strasbourg.
  5. Nasri, S., Lamachère, J. and Albergel, J. (2004)., Impact des banquettes sur le ruissellement d, Revue des sciences de l
  6. Abouabdillah, A., White, M., Arnold, J. G., De Girolamo, A. M., Oueslati, O., Maataoui, A., & Lo Porto, A. (2014)., Evaluation of soil and water conservation measures in a semiarid river basin in Tunisia using SWAT, Soil use and management, 30(4), 539-549.
  7. Sakka, M. (2011)., Application and comparison of two analytical tools of decision support for the management of resources in a river basin in Tunisia., Ph. D. Thesis Tuscia University of Viterbo, Italy, P 228. http://dspace.unitus.it/bitstream/2067/2498/1/msakka_tesid.pdf
  8. Bouraoui, F., Benabdallah, S., Jrad, A., and Bidoglio, G. (2005)., Application of the SWAT model on the Medjerda river basin (Tunisia)., Physics and Chemistry of the Earth, Parts A/B/C, 30(8-10), 497-507.
  9. Ouessar, M., Bruggeman, A., Abdelli, F., Mohtar, R. H., Gabriëls, D., and Cornelis, W. (2009)., Modelling water-harvesting systems in the arid south of Tunisia using SWAT., Hydrology and Earth System Sciences, 13(10), 2003-2021.
  10. Mosbahi, M., Benabdallah, S., and Boussema, M. R. (2011)., Determination of critical source areas for sediment loss: Sarrath River Basin, Tunisia., International Journal of Civil and Environmental Engineering, 3, 206-2010.
  11. Sellami, H., La Jeunesse, I., Benabdallah, S., and Vanclooster, M. (2013)., Parameter and rating curve uncertainty propagation analysis of the SWAT model for two small Mediterranean catchments., Hydrological Sciences Journal, 58(8), 1635-1657.
  12. Ben Othman, D., and Gueddari, M. (2014)., Hydrological study of the water quality of the Beja River according to the SWAT model., Desalination and Water Treatment, 52(10-12), 2047-2056.
  13. Aouissi, J., Benabdallah, S., Chabaâne, Z. L., & Cudennec, C. (2014)., Modeling water quality to improve agricultural practices and land management in a Tunisian catchment using the Soil and Water Assessment Tool., Journal of Environmental Quality, 43(1), 18-25.
  14. Khelifa, W. B., Hermassi, T., Strohmeier, S., Zucca, C., Ziadat, F., Boufaroua, M., & Habaieb, H. (2017)., Parameterization of the effect of bench terraces on runoff and sediment yield by SWAT modeling in a small semiarid watershed in Northern Tunisia., Land Degradation & Development, 28(5), 1568-1578.
  15. Mishra, A., Froebrich, J., & Gassman, P. W. (2007). Evaluation of the SWAT model for assessing sediment control structures in a small watershed in India. Transactions of the ASABE, 50(2), 469-477., undefined, undefined
  16. Melaku, N. D., Renschler, C. S., Holzmann, H., Strohmeier, S., Bayu, W., Zucca, C. and Klik, A. (2018)., Prediction of soil and water conservation structure impacts on runoff and erosion processes using SWAT model in the northern Ethiopian highlands., Journal of Soils and Sediments, 18(4), 1743-1755.
  17. Li, E., Mu, X., Zhao, G., Gao, P. and Sun, W. (2017)., Effects of check dams on runoff and sediment load in a semi-arid river basin of the Yellow River., Stochastic Environmental Research and Risk Assessment, 31(7), 1791-1803.
  18. Ma, X., Lu, X.X., van Noordwijk, M., Li, J.T. and Xu, J.C., (2014)., Attribution of climate change, vegetation restoration, and engineering measures to the reduction of suspended sediment in the Kajie catchment, Southwest China., Hydrol. Earth Syst. Sci., 18, 1979-1994.
  19. Lemann, T., Zeleke, G., Amsler, C., Giovanoli, L., Suter, H., and Roth, V. (2016)., Modelling the effect of soil and water conservation on discharge and sediment yield in the upper Blue Nile basin, Ethiopia., Applied geography, 73, 89-101.
  20. Zuo, D., Xu, Z., Yao, W., Jin, S., Xiao, P., and Ran, D. (2016)., Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China., Science of the Total Environment, 544, 238-250.
  21. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998)., Large area hydrologic modeling and assessment part I: model development 1., JAWRA Journal of the American Water Resources Association, 34(1), 73-89.
  22. Salah, N. C. B., and Abida, H. (2016)., Runoff and sediment yield modeling using SWAT model: case of Wadi Hatab basin, central Tunisia., Arabian Journal of Geosciences, 9(11), 579.
  23. MARH, DG/ACTA, Direction Générale de l, Etude de planification intégrée et participative des aménagements de conservation des eaux et du sol dans le gouvernorat de Kasserine. Ministère de l, SOLTEC.
  24. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivasan, R., and Williams, J. R. (2005)., Soil and water assessment tool input/output file documentation., Blackland Research Center, Temple, Texas.
  25. USDA, S. (1972)., National Engineering Handbook, Hydrology Section 4., US Department of Agriculture, Soil Conservation Service (Chapters 4-10).
  26. Green, W. H., and Ampt, G. A. (1911)., Studies on Soil Phyics., The Journal of Agricultural Science, 4(1), 1-24.
  27. Penman, H. L. (1948)., Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London., Series A. Mathematical and Physical Sciences, 193(1032), 120-145.
  28. Hargreaves, G. H. (1975)., Moisture availability and crop production., Transactions of the ASAE, 18(5), 980-0984.
  29. Priestley, C. H. B., and Taylor, R. J. (1972)., On the assessment of surface heat flux and evaporation using large-scale parameters., Monthly weather review, 100(2), 81-92.
  30. Williams, J. R., and Berndt, H. D. (1977)., Sediment yield prediction based on watershed hydrology., Transactions of the ASAE, 20(6), 1100-1104.
  31. McCarthy, G. T. (1938)., The unit hydrograph and flood routing. In proceedings of Conference of North Atlantic Division, US Army Corps of Engineers, 608-609., undefined
  32. Williams, J. R. (1969)., Flood routing with variable travel time or variable storage coefficients., Transactions of the ASAE, 12(1), 100-0103.
  33. Ben Salah, N. C. (2017)., Simulation des flux d, Thèse de doctorat, Ecole Nationale dIngénieurs de Tunis, 221p.
  34. RCAD of Kasserine., undefined, undefined