6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Biochemical, biomineral and microstructural properties of the present day bivalve Meretrix meretrix shells from the Thoothukudi coast, Tamil Nadu, India

Author Affiliations

  • 1Department of Earth Sciences, Annamalai University, Tamil Nadu, India

Int. Res. J. Earth Sci., Volume 7, Issue (3), Pages 1-9, September,25 (2019)


Bivalve shells are an affluent source of calcium content and significant for lime-based industries development. Indian coastlines are rich in bivalve shells occurrences. In this study, Meretrix meretrix (Bivalvia, Veneridae) shells of Thoothukudi coast of Tamil Nadu are taken to study the biochemistry, biomineralization and microstructure characteristics of the shell. After the morphological investigation, the shells were made into fine powder for meralogical and chemical analysis. XRF and XRD instruments were used for chemical and mineralogical measurements. Shell microstructure examination carried out using SEM. The XRF results reveal a high percentage of CaO content in the shell along with Fe, Sr and Mo. The XRD exhibits 12 peaks; all the peaks report aragonite minerals. The microstructures are examined in the shell portions of growth lines and umbo. The umbo part exhibits irregular homogeneous microstructures, whereas the growth lines exhibit granular homogeneous structure and prismatic structures. The umbo part consists of pore spaces which signify the growth of the shell is incomplete due to less availability of the extrapallial fluid (EPF). In the growth line part, two parallel sets of linear depression mark are present, which signifies that there is no sufficient nacre to spread uniformly throughout the shell. This study indicates that the study area Meretrix meretrix shells are formed by biogenic aragonite to a greater concentration, which has been proven with XRD and SEM analysis.


  1. Linnæus C. (1758)., Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis., Tomus I. Editio decima, reformata, 1(4), 1-824.
  2. Narasimham K.A. (1991)., Present status of clam fisheries of India., Journal of the Marine Biological Association of India, 33(1&2), 76-88.
  3. Kennedy W.J., Taylor J.D. and Hall A. (1969)., Environmental and Biological Controls on Bivalve Shell Mineralogy., Biological Reviews, 44(4), 499-530.
  4. Taylor J.D., Kennedy W.J. and Hall A. (1973)., The shell structure and mineralogy of the Bivalvia. II. Lucinacea-Clavagellacea., Bull. Brit. Mus. Nat. Hist. Zool, 22, 253-294.
  5. Carter J.G. (1980)., Guide to bivalve shell microstructures., In: Rhoads, D.C., Lutz, R.A. (Eds.), Skeletal Growth of Aquatic Organisms. Plenum, New York.
  6. Carter J.G. and Clark G.R. (1985)., Classification and phylogenetic significance of molluscan shell microstructure., Studies in Geology, Notes for a Short Course, 13, 50-71.
  7. Hedegaard C. and Wenk H.R. (1998)., Microstructure and texture patterns of molluse shells., Journal of Molluscan Studies, 64(1), 133-136. https://doi.org/10.1093/mollus/ 64.1.133
  8. Khoo H.W., Mok K.F., Tang S.M. and Yap C.T. (1985)., Strontium/calcium ratio analysis of molluscan shells in Singapore waters using the X-ray fluorescence technique., Environmental monitoring and assessment, 5(3), 325-332. https://doi.org/10.1007/BF00394072
  9. Thorn K., Cerrato R.M. and Rivers M.L. (1995)., Elemental Distributions in Marine Bivalve Shells as Measured by Synchrotron X-Ray Fluorescence., Biological Bulletin, 188(1), 57-67. https://doi.org/10.2307/1542067
  10. Crecelius E., Apts C., Bingler L., Brandenberger J., Deuth M., Kiesser S. and Sanders R. (1998)., Analysis of Marine Sediment and Bivalve Tissue by X-Ray Fluorescence, Atomic Absorption and Inductively Coupled Plasma Mass Spectrometry., Sampling and Analytical Methods of the National Status and Trends Program Mussel Watch Project, 1993-1996 Update, 74-80.
  11. Jones K.W., Bronson S., Brink P., Gordon C., Mosher-Smith K., Brown S., Chaudhry Rizzo A., Sigismondi R., Whitehurst M., Lukaszewski A., Kranz D.Bl and Gordan D., Lobel J., Sullivan J., Metzger M ., O, Bivalve Characterization Using Synchrotron Micro X-Ray Fluorescence., Acta Physica Polonica, 115(2), 477-481. https://doi.org/10.12693/aphyspola.115.477
  12. Twining B.S., Baines S.B., Fisher N.S., Maser J., Vogt S., Jacobsen C., Antonio Tovar-Sanchez and Sergio A. Sanũdo-Wilhelmy (2003)., Quantifying Trace Elements in Individual Aquatic Protist Cells with a Synchrotron X-ray Fluorescence Microprobe., Analytical Chemistry, 75(15), 3806-3816. https://doi.org/10.1021/ac034227z
  13. Nouet J., Cotte M., Cuif J.P., Dauphin Y. and Salomé M. (2012)., Biochemical change at the setting-up of the crossed-lamellar layer in nerita undata shell (Mollusca, Gastropoda)., Minerals., 2, 85-99. https://doi.org/10.3390/min2020085
  14. de Winter N.J. and Claeys P. (2017)., Micro X‐ray fluorescence (μ XRF) line scanning on Cretaceous rudist bivalves: A new method for reproducible trace element profiles in bivalve calcite., Sedimentology, 64(1), 231-251. https://doi.org/10.1111/sed.12299
  15. Gilbert B.M., Hussain E., Jirsa F. and Avenant-Oldewage A. (2017)., Evaluation of Trace Element and Metal Accumulation and Edibility Risk Associated with Consumption of Labeo umbratus from the Vaal Dam, South Africa., Int. J. Environ. Res. Public Health., 14(7), 678. https://doi.org/10.3390/ijerph14070678
  16. Calvert S.E. (1990)., Geochemistry and origin of the Holocene sapropel in the Black Sea., Facets of modern biogeochemistry, 326-352.
  17. Tjallingii R., Ro¨hl U., Ko¨lling M. and Bickert T. (2007)., Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments., Geochemistry Geophysics Geosystems, 8(2), 1-12. https://doi.org/10.1029/2006GC001393.
  18. Yang Du., Lian F. and Zhu L. (2011)., Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells., Environmental pollution, 159(7), 1763-1768. https://doi.org 10.1016/j.envpol.2011.04.017
  19. Fleischli F.D., Dietiker M., Borgia C. and Spolenak R. (2008)., The influence of internal length scales on mechanical properties in natural nanocomposites: a comparative study on inner layers of seashells., Acta biomaterialia, 4(6), 1694-1706. https://doi.org /10.1016/j.actbio.2008.05.029
  20. Wheeler A.P. (1992)., Mechanisms of molluscan shell formation., (In: Bonucci E (ed.). Calcification in Biological Systems, CRC press, 179-216.
  21. Wilbur K.M. and Saleuddin A.S.M. (1983)., Shell formation., The Mollusca, 4, 235-287.
  22. Cohen A. and McConnaughey T. (2003)., Geochemical perspectives on coral mineralization., Rev Mineral Geochem, 54, 151-187. https://doi.org/10.2113/0540151
  23. Falini G., Albeck S., Weiner S. and Addadi L. (1996)., Control of aragonite or calcite polymorphism by mollusk shell macromolecules., Science, 271, 67-69. DOI: https://doi.org 10.1126/science.271.5245.67
  24. Checa A.G., Jiménez-López C., Rodríguez-Navarro A. and Machado J.P. (2007)., Precipitation of aragonite by calcitic bivalves in Mg-enriched marine waters., Marine Biology, 150(5), 819-827. https://doi.org/10.1007/s00227-006-0411-4
  25. Ries J.B. (2010)., Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification., Biogeosciences, 7(9), 2795-2849. https://doi.org/10.5194/bg-7-2795-2010
  26. Stanley S.M. and Hardie L.A. (1998)., Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry., Palaeogeography, Palaeocli-matology, Palaeoecology, 144(1-2), 3-19. https://doi.org/ 10.5194/bg- 7-2795-2010
  27. Sandberg P.A. (1975)., New interpretations of Great Salt Lake ooids and of ancient non‐skeletal carbonate mineralogy., Sedimentology, 22(4), 497-537. https://doi.org/10.1111/j.1365-3091.1975.tb00244.x
  28. Gazeau F., Parker L.M., Comeau S., Gattuso J.P., O'Connor W.A., Martin S., Pörtner H.O. and Ross P.M. (2013)., Impacts of ocean acidification on marine shelled molluscs., Mar. Biol., 160(8), 2207-2245. https://doi.org/ 10.1007/s00227-013-2219-3
  29. Mackenzie C.L., Ormondroyd G.A., Curling S.F., Ball R. J., Whiteley N.M. and Malham S.K. (2014)., Ocean Warming, More than Acidification, Reduces Shell Strength in a Commercial Shellfish Species during Food Limitation., PLoS One, 9(1), e86764. https://doi.org/10.1371/journal.pone.0086764