6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Influence of increased vertical resolution in RegCM4.5 on summer climate simulation over West Africa

Author Affiliations

  • 1Department of Physics, University of Ibadan, Nigeria

Int. Res. J. Earth Sci., Volume 7, Issue (1), Pages 29-56, January,25 (2019)


The response of climate parameters to increase in vertical resolution based on a fixed horizontal resolution is simulated using RegCM4.5. Eighteen and 23 vertical levels are used for the simulation with 50 km x 50 km horizontal resolution in the LEV18 and LEV23 experiments, respectively. All other model parameters are the same except for the number of model vertical levels. Most of the climate parameters are better resolved in the higher resolution experiment. Air temperature is well captured by both vertical resolutions at upper and mid troposphere but LEV23 performs better at the surface. Simulations of omega pressure velocity from both resolutions have biases in terms of vertical and north-south extents and strength. Increased vertical resolution generally improves the simulated climate and makes it more realistic.


  1. Williams J.J., Esteves L.S. and Rochford L.A. (2015)., Modelling storm responses on a high energy coastline with XBeach., Model. Earth Syst. Environ., 1(1-2), 3.
  2. Yospin G.I., Wood S.W., Holz A., Boeman D.M., Keane R.E. and Whitlock C. (2015)., Modelling vegetation mosaics in sub-alpine Tasmania under various fire regimes., Model Earth Syst. Environ., 1(3), 16.
  3. Das Y., Mohanty U.C. and Jain I. (2016)., Development of tropical cyclone wind field for simulation of storm surge/sea surface height using numerical ocean model., Modeling Earth Systems and Environment, 2(1), 13.
  4. Shrivastava S., Bal P.K., Ashrit R., Sharma K., Lodh A. and Mitra A.K. (2017)., Performance of NCUM global weather modeling system in predicting the extreme rainfall events over the central India during the Indian summer monsoon 2016., Modeling Earth Systems and Environment, 3(4), 1409-1419. http://doi.org/10.1007/s408001703878.
  5. Jisan M.A., Bao S., Pietrafesa L.J., Shen D., Gayes P.T. and Hallstrom J. (2018)., Hurricane Matthew (2016) and its impact under global warming scenarios., Modeling Earth Systems and Environment, 4(1), 97-109. https://doi.org/10.1007/s40808-018-0420-6.
  6. Brown C., Greene A., Block P. and Giannini A. (2008)., Review of Downscaling Methodologies for Africa Climate Applications., IRI Technical Report 08 - 05, IRI Downscaling Report. International Reasearch Institute for Climate and Society. Columbia University.
  7. Jones C., Giorgi F. and Asrar G. (2011)., The Coordinated Regional Downscaling Experiment: CORDEX An international downscaling link to CMIP5., CLIVAR Exchanges, 56(16), 34-41.
  8. Nikulin G., Jones C., Giorgi F., Asrar G., Buchner M., Cerezo-mota R., Christensen O.B., DeQue M., Fernandez J., Hansler A., Meijgaard E.V., Samuelsson P., Sylla M.B. and Sushama L. (2012)., Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations., J. Clim., 25, 6057-6078.
  9. Liess S. and Bengtsson L. (2004)., The intraseasonal oscillation in ECHAM4 Part II: sensitivity studies., Climate dynamics, 22(6-7), 671-688.
  10. Land C., Ponater M., Sausen R. and Roeckner E. (1999)., The ECHAM4. L39 (DLR) atmosphere GCM - Technical description and model climatology., DLR Forschungsbericht, 1999-31, 45. ISSN 1434-8454, Deutsches Zentrum fur Luft- und Raumfahrte, 51170 Koln, Germany.
  11. Roeckner E., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kornblueh L., Manzini E., Schlese U. and Schulzweida U. (2004)., The atmospheric general circulation model ECHAM 5., PART II: Sensitivity of Simulated Climateto Horizontal and Vertical Resolution, MPI-Report 354, 56. (mpi_report_354.pdf, 10.7 MB).
  12. Lindzen R.S. and Fox-Rabinovitz M. (1989)., Consistent vertical and horizontal resolution., Monthly Weather Review, 117(11), 2575-2583.
  13. Inness P.M., Slingo J.M., Woolnough S.J., Neale R.B. and Pope V.D. (2001)., Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden-Julian Oscillation., Climate Dynamics, 17(10), 777-793.
  14. Pope V.D., Pamment J.A., Jackson D.R. and Slingo A. (2001)., The representation of water vapor and its dependence on vertical resolution in the Hadley Centre Climate Model., Journal of climate, 14(14), 3065-3085.
  15. Spencer H. and Slingo J.M. (2003)., The simulation of peak and delayed ENSO teleconnections., J. Clim., 16(11), 1757-1774.
  16. Ruti P.M., Rocco D.D. and Gualdi S. (2006)., Impact of increased vertical resolution on simulation of tropical climate., Theor. Appl. Climatol., 85(1-2), 61-80.
  17. Tang J.P., Zhao M. and Su B.K. (2007)., The effects of model resolution on the simulation of regional climate extreme events., Acta Meteorologica Sinica, 21(2), 129-140.
  18. Druyan L.M., Fulakeza M. and Lonergan P. (2008)., The impact of vertical resolution on regional model simulation of the West African summer monsoon., International Journal of Climatology, 28(10), 1293-1314.
  19. Zeng X., Wang M., Zhang Y., Wang Y. and Zheng Y. (2016)., Assessing the Effects of Spatial Resolution on Regional Climate Model Simulated Summer Temperature and Precipitation in China: A Case Study., Advances in Meteorology. ID 7639567: 12 pages.http://dx.doi.org/10.1155/2016/7639567.
  20. Elguindi N., Bi X., Giorgi F., Nagarajan B., Pal J., Solmon F., Rauscher S., Zakey A., O'Brien T., Nogherotto R. and Giulian G. (2014)., Regional climate model user's manual version 4.4. Earth system physics section., The Abdus Salam International Centre for Theoretical Physics, Trieste.
  21. Giorgi F., Coppola E., Solmon F., Mariotti L., Sylla M.B., Bi X., Elguindi N., Diro G.T., Nair V., Giuliani G., Turuncoglu U.U., Cozzini S., Gu¨ttler I., O'Brien T.A., Tawfik A.B., Shalaby A., Zakey A.S., Steiner A.L., Storda F., Sloan L.C. and Brankovic C. (2012)., RegCM4 model description and preliminary tests over multiple CORDEX domains., Climate Research, 52, 7-29.
  22. Giorgi F., Solmon F. and Giuliani G. (2016)., Regional Climatic Model RegCM User's Guide Version 4.5 Trieste, Italy.,
  23. Adeniyi M.O. (2014)., Sensitivity of different convection schemes in RegCM4.0 for simulation of precipitation during the Septembers of 1989 and 1998 over West Africa., Theor. Appl. Climatol., 115(1-2), 305-322.
  24. Mitchell T.D. and Jones P.D. (2005)., An improved method of constructing a database of monthly climate observations and associated high‐resolution grids., International journal of climatology, 25(6), 693-712.
  25. Huffman G.J., Alder R.F., Morrissey M., Bolvin D., Curtis S., Joyce R., McGavock B. and Susskind J. (2001)., Global precipitation at one degree daily resolution from multi-satellite observations., Journal of Hydrometeorology, 2, 36-50.
  26. Yin X., Gruber A. and Arkin P. (2004)., Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979-2001., Journal of Hydrometeorology, 5(6), 1207-1222.
  27. Bolvin D.T., Adler R.F., Huffman G.J., Nelkin E.J. and Poutiainen J.P. (2009)., Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations., Journal of Applied Meteorology and Climatology, 48(9), 1843-1857.
  28. Liebmann B. and Smith C.A. (1996)., Description of a complete (interpolated) outgoing longwave radiation dataset., Bulletin of the American Meteorological Society, 77(6), 1275-1277.
  29. Schumacher C. and Houze Jr, R.A. (2003)., Stratiform rain in the tropics as seen by the TRMM precipitation radar., Journal of Climate, 16(11), 1739-1756.