6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Li, Cs, Ta and Rb enrichment in metasedimentary intrusive body: a marker of rare metal potential mineralisation of pegmatite in origin, Musha-Ntunga area, Eastern Province, Rwanda

Author Affiliations

  • 1Institute of Life and Earth Sciences, Pan African University, Ibadan, Nigeria & Department of Geology, University of Ibadan, Ibadan, Nigeria & Department of Mining regulation and Inspection, Rwanda Mines, Petroleum and Gas Board, Kigali, Rwanda
  • 2Department of Geology, University of Ibadan, Ibadan, Nigeria
  • 3Department of Geology, University of Ibadan, Ibadan, Nigeria

Int. Res. J. Earth Sci., Volume 7, Issue (1), Pages 1-12, January,25 (2019)


The study aims to geochemically characterize the pegmatite and elucidate the current processes occurred after the primary emplacement of ores in Musha-Ntunga area, Rwanda. The rare metal pegmatites intruded the metasedimentary rocks dominated by schists in Musha formation. The laboratory analyses of petrography and geochemistry were used. The petrographic analysis investigated mineral assemblages, and whole rock analysis for major elements by ICP AES and trace elements by ICP MS. Petrographic studies revealed the mineral assemblages include plagioclase, mica, tourmaline and muscovite. The results of geochemical analysis revealed medium to high silica content (in wt%) ranges from 67.08-70.66, the Al2O3 ranges 26.6-28.7 (in wt%), Na2O ~0.06 (in wt%) and CaO varies between (0.06-0.07) (in wt%) for the intrusive body of pegmatite in origin intruded metasedimentary rocks. These alterated intrusion of pegmatite in origin are enriched in trace elements of Rb(~715.18ppm ), Cs( ~34.43ppm), Li(~148.33ppm), W(~492.ppm), and the rare metals Nb(1154.16ppm~), Ta(>2500 ppm), and Sn(>10.000 ppm), the enrichment of those elements has commonly indicated a marker of a magmatic-hydrothermal alteration of pegmatite intrusion. The molar Na2O-Al2O3-K2O plot revealed that the pegmatites evolved from the peraluminous granite (or S-type). REE abundance in whole rock pegmatitic intrusive body was &


  1. Dill H.G. (2015)., Pegmatites and aplites: Their genetic and applied ore geology., Ore Geology Reviews, 69, 417-561.
  2. Muchez P., Hulsbosch N., Dewaele S. and Wetenschappen M.Z.K.A.O. (2014)., Geological mapping and implications for Nb-Ta, Sn and W prospection in Rwanda., Mededelingen Zittingen Koninklijke Academie Overzeese Wetenschappen, 60, 515-530.
  3. De Clercq F. (2012)., Metallogenesis of Sn and W vein-type deposits in the Karagwe-Ankole belt (Rwanda)., PhD Thesis Katholieke Universiteit Leuven.
  4. Dewaele S., Henjes-Kunst S., Melcher F., Sitnikova M., Burgess R., Gerdes A., Fernandez Alonso M., De Clercq F., Muchez Ph. and Lehmann B. (2011)., Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)., J. Afr. Earth Sci. 61, 10-26.
  5. Tack L., Fernandez-Alonso M., De Waele B., Tahon A., Dewaele S., Baudet D. and Cutten H. (2006)., The NortheasternKibaran Belt (NKB): a long-lived Proterozoic intraplate history., In: 21st Colloquium African Geology (CAG21), 03-05.07.2006, Maputo, Mozambique, Abstract volume, 149-151.
  6. Hulsbosch N., Van Daele J., Reinders N., Dewaele S., Jacques D. and Muchez P. (2017)., Structural control on the emplacement of contemporaneous Sn-Ta-Nb mineralized LCT pegmatites and Sn bearing quartz veins: Insights from the Musha and Ntunga deposits of the Karagwe-Ankole Belt, Rwanda., Journal of African Earth Sciences, 134, 24-32.
  7. Pohl W. (1994)., Metallogeny of the northeastern Kibara belt, Central Africa-Recent perspectives., Ore Geology Reviews, 9(2), 105-130.
  8. Ikingura J.R. (1995)., petrology and Geochemistry of granites from the Karagwe -Ankolean ,(NE Kibaran) Belt,NW Tanzania., Berliner geowiss. Abh. A175, Berlin, 25-36.
  9. Okunlola O.A. and Jimba S. (2006)., Compositional trends in relation to Ta-Nb mineralization in Precambrian pegmatites of Aramoko, Ara and Ijero area, southwestern Nigeria., Journal of Mining and Geology, 42(2), 113-126.
  10. Cahen L., Snelling N.J., Delhal J., Vail J.R., Bonhomme M. and Ledent D. (1984)., The Geochronology and Evolution of Africa., Clarendon Press, Oxford.
  11. Fernandez-Alonso M. (2007)., Geological Map of the Mesoproterozoic Northeastern Kibara Belt., Royal Museum for Central Africa, Tervuren (Belgium): ISBN: 978-90-74752-12-1; catalogue of maps and digital data, at "http://www. africamuseum.be.
  12. Baudet D., Hanon M., Lemonne E., Theunissen K., Buyagu S., Dehandschutter J., Ngizimana W., Nsengiyuma P., Rusanganwa J.B. and Tahon A. (1988)., Lithostratigraphie dudomaines_edimentaire de la chaîneKibarienne au Rwanda., Ann. Societe Geologique Belg, 112, 225-246.
  13. Theunissen K., Hanon M. and Fernandez Alonso M. (1991)., Carte G_eologique du Rwanda, 1:200 000., Service Geologique, Ministere de l'Industrieet de l'Artisanat, RepubliqueRwandaise.
  14. Fernandez-Alonso M., Cutten H., De Waele B., Tack L., Tahon A., Baudet D. and Barritt S.D. (2012)., The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two shortlived far-field compressional events., Prec Res., 216, 63-86.
  15. Varlamoff N. (1969)., Transitions entre les filons de quartz et les pegmatites stanniferes de la region de Musha-Ntunga (Ruanda)., Ann. Soc. Geol. Belg., 92, 193-213.
  16. Slatkine A. (1967)., Aspects structuraux de la mineralisation stannifere du Rwanda., Bull. Serv. G_eologique Rwanda, 4, 47-92.
  17. Černý P. and Ercit T.S. (2005)., The classification of granitic pegmatites revisited., The Canadian Mineralogist, 43(6), 2005-2026.
  18. Tack L., Wingate M.T.D., De Waele B., Meert J., Belousova E., Griffin B., Tahon A. and Fernandez-Alonso M. (2010)., The 1375 Ma 'Kibaran event' in Central Africa: prominent emplacement of bimodal magmatism under extensional regime., Precambrian Res., 180, 63-84.
  19. Hulsbosch N., Boiron M.C., Dewaele S. and Muchez P. (2016)., Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda)., Geochimica et Cosmochimica Acta, 175, 299-318.
  20. Van Daele J. (2016)., Regional variation of and controls on the granite-related Nb-Ta-Sn deposits in the Rwamagana-Musha-Ntunga area, East Rwanda., Master thesis, KU Leuven, 172.
  21. Hanon M. and Rusanganwa J.B. (1991)., Carte G_eologique du Rwanda, Feuille Kigali, 1: 100,000 et note explicative. Departement de Geologieet de Min_eralogie du Musee royal de l,
  22. Straurov O.D., Stolyarov I.S. and Isocheva E.I. (1969)., Geochemistry and origin of VerkhIset granitoid massif in central Ural., Geochem. Intern., 6, 1138-1148.
  23. Gordiyenko V.V. (1971)., Concentrations of Li, Rb, and Cs in potash feldspar and muscovite as criteria for assessing the rare-metal mineralization in granite pegmatites., International Geology Review, 13(2), 134-142.
  24. Möller P. and Morteani G. (1987)., Geochemical exploration guide for tantalum pegmatites., Economic Geology, 82(7), 1888-1897.
  25. Boynton W.V. (1984)., Geochemistry of the rare earth elements: meteorite studies., In: Henderson, P. (Ed.), Rare Earth Element Geochemistry, Elsevier, 2, 63-114.