5th International Young Scientist Congress (IYSC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A perspective view of origins and occurrences of Niobium-Tantalum, Tin and Tungsten mineralisation in Rwanda

Author Affiliations

  • 1Institute of Life and Earth Sciences, Pan African University, Nigeria and Department of Geology, University of Ibadan, Nigeria
  • 2Institute of Life and Earth Sciences, Pan African University, Nigeria and Department of Geology, University of Ibadan, Nigeria
  • 3Department of Geology, University of Ibadan, Nigeria
  • 4Centre for Earth Sciences, Indian Institute of Science, Bangalore, India

Int. Res. J. Earth Sci., Volume 6, Issue (1), Pages 20-29, January,25 (2018)


Rwanda is geologically situated in the Karagwe Ankole Belt, centre east Africa. Karagwe Ankole Belt (KAB) is separated from Kibara Belt (KIB) by a Paleoproterozoic Rusizian terrane and they both form mesoproterozoic orogenic belts of Central Africa. The KAB, which spans Rwanda, Burundi, Southwestern Uganda and Northwestern Tanzania, and the KIB together host a large metallogenic province that is composed of numerous rare -metal ore deposits mineralised in niobium-tantalum(Nb-Ta), tin(Sn) and tungsten(W).The part of the KAB located in Rwanda contains the bulk of cassiterite, columbite-tantalite, and wolframite. These ore minerals have been termed 3Ts and occur in Nb-Ta-Snpegmatites, W-Sn hydrothermal quartz vein deposits and Sn greisens, which are components of one composite metallogenic system related to the granite generation (G4-granite or fertile granite) that occurred at 986±10Ma. The composition of hydrothermal fluid is H2O–CO2–CH4–N2–NaCl, and this fluid is characterized by the low to moderate salinity (2.7-14.2 eq. wt.% NaCl), high pressure (~100MPa), and the mesothermal temperature (~300°C). The isotopic composition of the fluids indicated that the mineralised quartz veins are much more likely to be formed from the fluid mainly subjected to metamorphic processes, in equilibrium with magmatic rocks (G4 granite) from which the present precipitated metals were remobilised and got deposited in favoured preferential sites, within metasedimentary rocks, under structural and lithological controls. This paper owes the brief on the current status of views about the mineralisation of 3Ts in Rwanda.


  1. Safari B. (2010)., A review of energy in Rwanda., Renewable Sustainable Energy Rev., 14, 524-529.
  2. Pohl W. (1994)., Metallogeny of the north eastern Kibara belt, Central Africa-Recent perspectives., Ore. Geol. Rev., 9(2), 105-130.
  3. Pohl W. and Günther M.A. (1991)., The origin of Kibaran (late Mid-Proterozoic) tin, tungsten and gold quartz vein deposits in Central Africa: a fluid inclusions study., Mineralium Deposita, 26, 51-59.
  4. Dewaele S., Tack L., Fernandez M., Boyce A. and Muchez P. (2007)., Cassiterite and columbite mineralization in pegmatites of the northern part of the Kibara orogen (Central Africa): the Gatumba area (Rwanda)., In Irish Association for Economic Geology Proceedings, 2, 1489-1492.
  5. De Clercq F. (2012)., Metallogenesis of Sn and W vein-type deposits in the Karagwe-Ankole belt (Rwanda)., (Unpublished doctoral dissertation). Katholieke Universiteit Leuven.
  6. Dewaele S., Henjes-kunst F., Melcher F., Sitnikova M., Burgess R., Gerdes A., Fernandez-Alonso M., De clercq F., Muchez Ph. and Lehmann B. (2011)., Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)., J. Afr. Earth. Sci., 61, 10-26.
  7. Dewaele S., De Clercq F., Hulsbosch N., Piessens K., Boyce A., Burgess R. and Muchez P. (2016)., Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe–Ankole belt, Central Africa., Miner Deposita., 51(2), 283-307.
  8. Tack L., Wingate M.T.D., De Waele B., Meert J., Belousova E., Griffin B. and Fernandez-Alonso M. (2010)., The 1375Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime., Precambrian Research, 180(1), 63-84.
  9. Tack L., Fernandez-Alonso M., De Waele B., Tahon A., Dewaele S., Baudet D. and Cut-ten H. (2006)., The NortheasternKibaran Belt (NKB): a long-lived Proterozoic intraplate history., In: 21st Colloquium African Geology (CAG21), 03–05.07.2006, Maputo, Mozambique, 149-151.
  10. Dewaele S., Hulsbosch N., Cryns Y., Boyce A., Burgess R. and Muchez P. (2016)., Geological setting and timing of the world-class Sn, Nb–Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo)., Ore Geology Reviews, 72, 373-390.
  11. Lecumberri-Sanchez P., Vieira R., Heinrich C.A., Pinto F. and Wӓlle M. (2017)., Fluid-rock interaction is decisive for the formation of tungsten deposits., Geology, 45(7), 579-582.
  12. Romer R.L. and Lehmann B. (1995)., U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi., Econ.Geol., 90(8), 2303-2309.
  13. Clifford T.N., Kennedy W.Q. and Gass I.G. (1970)., African magmatism and tectonics: a volume in honour of WQ Kennedy., Hafner Pub. Co.
  14. Gubanov A.P. and Mooney W.D. (2009)., December. New global geological maps of crustal basement age., In AGU Fall Meeting Abstracts.
  15. BRGM. (1987)., Plan minéral du Rwanda(unpublished report)., Rwanda mines, petroleum and Gas Board, 322.
  16. Baudet D., Hanon M., Lemonne E., Theunissen K., Buyagu S., Dehandschutter J. and Tahon A. (1988)., Lithostratigraphie du domaine sédimentaire de la chaine Kibarienne au Rwanda., Annales de la Société géologique de Belgique, 112, 225-246.
  17. Fernandez-Alonso M., Cutten H., De Waele B., Tack L., Tahon A., Baudet D. and Barritt S.D. (2012)., The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events., Prec Res. Els B.V., 216, 63-86.
  18. Fernandez-Alonso M. and Theunissen K. (1998)., Airborne geophysics and geochemistry provide new insights in the intracontinental evolution of the Mesoproterozoic Kibaran belt (Central Africa)., Geological Magazine, 135(2), 203-216.
  19. Baudin B., Zigirababili J., Ziserman A. and Petricec V. (1982)., Carte des gîtesminéraux du Rwanda., Ministère des ressourcesnaturelles(MIRENA), RépubliqueRwandaise, Kigali, 1/250 000
  20. Fernandez-Alonso M., Tack L., Tahon A., Laghmouch M. and Hardy B. (2007)., Geological Compilation of the Mesoproterozoic Northeastern Kibara (Karagwe-Ankole) Belt., Royal Museum for Central Africa, Tervuren, Belgium, scale 1/500,000.
  21. Bertossa A. (1967)., Inventaire des minéraux du Rwanda., Bull. Serv. Géol. Rwanda, 4, 25-45.
  22. Minirena (2012)., Mining in Rwanda(unpublished archives), Rwanda.,
  23. Schütte P. (2014)., Rwanda tin production country profile, in DERA (German Mineral Resources Agency),Tin – Supply and Demand until 2020., DERA natural resources information series no. 20 (translated;original in German).
  24. BNR. (2017)., External trade statistics for annual exports include cassiterite, coltan and wolframite in Rwanda., Banque nationale du Rwanda.
  25. Hulsbosch N., Van Daele J., Reinders N., Dewaele S., Jacques D. and Muchez P. (2017)., Structural control on the emplacement of contemporaneous Sn-Ta-Nb mineralized LCT pegmatites and Sn bearing quartz veins: Insights from the Musha and Ntunga deposits of the Karagwe-Ankole Belt, Rwanda., Journal of African Earth Sciences, 134, 24-32.
  26. Ahmad M. (1995)., Genesis of tin and tantalum mineralization in pegmatites from the Bynoe area, Pine Creek Geosyncline, Northern Territory., Australian Journal of Earth Sciences, 42(5), 519-534.
  27. Clayton R.N. and Mayeda T.K. (1963)., The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis., Geochimica et cosmochimica acta, 27(1), 43-52.
  28. Taylor R.G. (1979)., Geology of Tin Deposits., Developments in Economic Geology II.
  29. De Waele B., Fitzsimons I.C.W., Wingate M.T.D., Tembo F., Mapani B. and Belousova E.A. (2009)., The geochronological framework of the Irumide Belt: a prolonged crustal history along the margin of the Bangweulu Craton., American Journal of Science, 309(2), 132-187.
  30. De Clercq F., Muchez P., Dewaele S. and Boyce A. (2008)., The tungsten mineralisation at Nyakabingo and Gifurwe (Rwanda): Preliminary results., Geol. Belgica, 11, 251-258.
  31. Matsuhisa Y., Goldsmith J.R. and Clayton R.N. (1979)., Oxygen isotopic fractionation in the system quartz-albite-anorthite-water., Geochimica et Cosmochimica Acta, 43(7), 1131-1140.
  32. Cahen L. (1982)., Geochronological correlation of the Late Precambrian sequences on and around the stable zones of Equatorial Africa., Precambrian Research, 18(1-2), 73-86.
  33. Cahen L. and Ledent D. (1979)., Précisions sur l’age, la pétrogénese et la position stratigraphique des granites aétain de l’est de l’Afrique Centrale., Bull. Soc. Belg. Géol, 88, 33-49.
  34. Ikingura J.R., Reynolds P.H., Watkinson D.H. and Bell K. (1992)., 40Ar/39Ar dating of micas from granites of NE Kibaran Belt (Karagwe-Ankolean), NW Tanzania., J. Afr. Earth Sci., 15, 501-511.
  35. Brinckmann J. and Lehmann B. (1983)., Exploration de la bastnaésite-monacitedans la region de Gakara, Burundi., Rapport sur la phase 1, Unpublished report, Bujumbura/Hannover, 157.
  36. Brinckmann J., Lehmann B. and Timm F. (1994)., Proterozoic gold mineralization in NW Burundi., Ore geology reviews, 9(2), 85-103.
  37. Sorby H.C. (1858)., On the microscopical, structure of crystals, indicating the origin of minerals and rocks., Quarterly Journal of the Geological Society, 14(1-2), 453-500.
  38. Roedder E. (1984)., Fluid inclusions. Reviews in mineralogy., Mineral. Soc. Amer., 12, 644.
  39. Kilias S.P. and Konnerup-Madsen J. (1997)., Fluid inclusion and stable isotope evidence for the genesis of quartz-scheelite veins, Metaggitsi area, central Chalkidiki Peninsula, N. Greece., Mineralium Deposita, 32(6), 581-595.
  40. O, Fluid inclusion study of the Ballinglen W-Sn-sulphide mineralization, SE Ireland., Mineralium Deposita, 32(6), 569-580.
  41. Huff T.A. and Nabelek P.I. (2007)., Production of carbonic fluids during metamorphism of graphitic pelites in a collisional orogen—an assessment from fluid inclusions., Geochimica et Cosmochimica Acta, 71(20), 4997-5015.
  42. Hoefs J. (2004)., Stable isotope geochemistry., 5th revised and updated edition. Springer, Berlin, 244.
  43. Kontak D.J. and Kyser T.K. (2009)., Nature and origin of an LCT-suite pegmatite with late-stage sodium enrichment, Brazil Lake, Yarmouth County, Nova Scotia. II. Implications of stable isotopes (δ 18 O, δD) for magma source, internal crystallization and nature of sodium metasomatism., The Canadian Mineralogist, 47(4), 745-764.
  44. Dewaele S., De Clercq F., Muchez P., Schneider J., Burgess R., Boyce A. and Alonso M. F. (2010)., Geology of the cassiterite mineralisation in the Rutongo area, Rwanda (Central Africa): current state of knowledge., Geologica Belgica, 13, 91-112.