International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A review on interactions of Trichoderma with Plant and Pathogens

Author Affiliations

  • 1Department of Plant Pathology, G. B. Pant University of Agriculture and Technology, Pantnagar–263145, Uttarakhand, INDIA
  • 2Department of Plant Pathology, G. B. Pant University of Agriculture and Technology, Pantnagar–263145, Uttarakhand, INDIA

Res. J. Agriculture & Forestry Sci., Volume 3, Issue (2), Pages 20-23, February,8 (2015)


Trichoderma spp. are the most successful bio-fungicides used in today’s agriculture with more than 60 % of the registered bio-fungicides world-wide being Trichoderma based. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma mediated biological control. Several strategies have been applied to identify the main genes and compounds involved in this complex, three-way cross-talk between the fungal antagonist, the plant, and microbial pathogens. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.


  1. Harman G.E., Howell C.R., Viterbo A., Chet I. and Lorito, M., Trichoderma species-opportunistic, avirulent plant symbionts, Nat. Rev. Microbiol., 2, 43–56 (2004)
  2. Mukherjee P.K., Benjamin A., Horwitz Estrella A.H., Schmoll M. and Kenerley C.M., Trichoderma research in the genome era, Annu. Rev. Phytopathol., 51, 105–29 (2013)
  3. Grigoriev I.V., Nordberg H., Shabalov I., Aerts A. and Cantor. M. et. al., The genome portal of the Department of Energy Joint Genome Institute, Nucleic Acids Res., 40, D26–32 (2012)
  4. Verma M., Brar S.K., Tyagi R.D., Surampalli R.Y.and Valero J.R., Antagonistic fungi, Trichoderma spp.: panoply of biological control, Biochem. Eng. J., 37, 1–20 (2007)
  5. Singh H.B., Singh B.N., Singh S.P., Singh S.R. and Sharma B.K., Biological control of plant diseases: current status and future prospects, In: Recent advances in biopesticides : Biotechnological applications, Johri, J.K. (ed.) New India Pub, New Delhi, 322 (2009)
  6. Shoresh M. and Harman G.E., The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root : A proteomic approach, Plant Physiol., 147, 2147–2163 (2008)
  7. Contreras-Cornejo H.A., Macıas-Rodrıguez L., CortesPenagos C. and Lopez-Bucio J., Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis, Plant Physiol, 149,1579– 1592 (2009)
  8. Viterbo A. and Chet I., TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization, Mol. Plant. Pathol., 7, 249–258 (2006)
  9. Samolski I., Rincon A.M., Pinzon L.M., Viterbo A., and Monte E., The qid74 gene from Trichoderma harzianum has a role in root architecture and plant bio-fertilization, Microbiol., 158, 129–138 (2012)
  10. Shoresh M., Harman G.E. and Mastouri F., Induced systemic resistance and plant responses to fungal biocontrol agents, Annu. Rev. Phytopathol., 48, 21–43 (2010)
  11. Alfano G., Ivey M.L., Cakir C., Bos J.I., Miller S.A., Madden L.V., Kamoun S. and Hoitink H.A., Systemic modulation of gene expression in tomato by Trichoderma hamatum 382, Phytopathology, 97, 429–437 (2007)
  12. Rubio M.B., Dominguez S., Monte E. and Hermosa R., Comparative study of Trichoderma gene expression in interactions with tomato plants using high-density oligonucleotide microarrays, Microbiol., 158, 119–128 (2012)
  13. Druzhinina I.S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B.A., Kenerley C. M., Monte E., Mukherjee P. K., Zeilinger S., Grigoriev I.V. and Kubicek C.P., Trichoderma—the genomics of opportunistic success, Nat Rev Microbiol, 9, 749–759 (2011)
  14. Djonovic S., Pozo M.J., Dangott L.J., Howell C.R. and Kenerley C.M., Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance, Mol Plant Microbe Interact., 19, 838–853 (2006)
  15. Seidl V., Marchetti M., Schandl R., Allmaier G. and Kubicek C.P., EPL1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors, FEBS J., 273, 4346–4359 (2006)
  16. Bailey B.A., Stream M.D. and Wood D., Trichoderma species form endophytic associations within Theobroma cacao trichomes, Mycol. Res., 113, 1365–1376 (2009)
  17. Kubicek C.P., Herrera E.A., Seidl S.V. and Martinez D.A. et. al., Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma, Genome Biol 12, 40-63 (2011)
  18. Omann M.R., Lehner S., Escobar R.C., Brunner K. and Zeilinger S., The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host, Microbiol 158, 107–118 (2012)
  19. Schmoll M., The information highways of a biotechnological workhorse—signal transduction in Hypocrea jecorina, BMC Genomics, 9, 430 (2008)
  20. Mukherjee P.K., Kenerley C.M., Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1, Appl. Environ. Microbiol., 76, 2345–2352(2010)
  21. Djonovic S., Pozo M.J. and Kenerley C.M., Tvbgn3, a beta-1,6- glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum, Appl. Environ. Microbiol., 72, 7661–7670 (2006)
  22. Viterbo A., Horwitz B.A., Mycoparasitism, . In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi, ASM Press, Herndon, 56, 676–694 (2010)
  23. Reino J.L., Guerrero R.F., Hernandez-Galan R., Collado I.G., Secondary metabolites from species of the biocontrol agent Trichoderma, Phytochem. Rev., 7, 89–123 (2008)